80,856 research outputs found
Carrier Sense Random Packet CDMA Protocol in Dual-Channel Networks
Code resource wastage is caused by the reason that many hopping frequency (FH) sequences are unused, which occurs under the condition that the number of the actual subnets needed for the tactical network is far smaller than the networking capacity of code division net¬working. Dual-channel network (DCN), consisting of one single control channel and multiple data channels, can solve the code resource wastage effectively. To improve the anti-jamming capability of the control channel of DCN, code division multiple access (CDMA) technology was introduced, and a carrier sense random packet (CSRP) CDMA protocol based on random packet CDMA (RP-CDMA) was proposed. In CSRP-CDMA, we provide a carrier sensing random packet mechanism and a packet-segment acknowledgement policy. Furthermore, an analytical model was developed to evaluate the performance of CSRP-CDMA networks. In this model, the impacts of multi-access interference from both inter-clusters and intra-clusters were analyzed, and the mathematical expressions of packet transmission success probability, normalized network throughput and signal interference to noise ratio, were also derived. Analytical and simulation results demonstrate that the normalized network throughput of CSRP-CDMA outperforms traditional RP-CDMA by 10%, which can guarantee the resource utilization efficiency of the control channel in DCNs
A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope's Wide Field Camera 3 Near-IR Detector and Applications to Transiting Exoplanets and Brown Dwarfs
The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-IR channel
is extensively used in time-resolved observations, especially for transiting
exoplanet spectroscopy and brown dwarf and directly imaged exoplanet rotational
phase mapping. The ramp effect is the dominant source of systematics in the
WFC3 for time-resolved observations, which limits its photometric precision.
Current mitigation strategies are based on empirical fits and require
additional orbits "to help the telescope reach a thermal equilibrium". We show
that the ramp effect profiles can be explained and corrected with high fidelity
using charge trapping theories. We also present a model for this process that
can be used to predict and to correct charge trap systematics. Our model is
based on a very small number of parameters that are intrinsic to the detector.
We find that these parameters are very stable between the different datasets,
and we provide best-fit values. Our model is tested with more than 120 orbits
( visits) of WFC3 observations and is proved to be able to provide near
photon noise limited corrections for observations made with both staring and
scanning modes of transiting exoplanets as well as for starting-mode
observations of brown dwarfs. After our model correction, the light curve of
the first orbit in each visit has the same photometric precision as subsequent
orbits, so data from the first orbit need no longer be discarded. Near IR
arrays with the same physical characteristics (e.g., JWST/NIRCam) may also
benefit from the extension of this model, if similar systematic profiles are
observed.Comment: 16 pages, 13 figures, accepted to Astronomical Journa
Rectification of displacement currents in an adiabatic electron pump
Rectification of ac displacement currents generated by periodic variation of
two independent gate voltages of a quantum dot can lead to a dc voltage linear
in the frequency. The presence of this rectified displacement current could
account for the magnetic field symmetry observed in a recent measurement on an
adiabatic quantum electron pump by Switkes et al. [Science 283, 1905 (1999)].Comment: 2 pages, RevTeX; 1 figur
Influence of Potamogeton crispus growth on nutrients in the sediment and water of Lake Tangxunhu
An incubation experiment was performed on Potamogeton crispus (P. crispus) using sediment collected from Lake Tangxunhu in the center of China, in order to determine the effects of plant growth on Fe, Si, Cu, Zn, Mn, Mg, P, and Ca concentrations in the sediments and overlying waters. After 3 months of incubation, Ca, Mg, and Si concentrations in the water column were significantly lower, and P and Cu concentrations were significantly higher than in unplanted controls. The effect of P. crispus growth on sediment pore waters and water-extractable elements varied. Concentrations of Ca, Mg, Si, Fe, Cu, and Zn were significantly higher, and P was significantly lower, than in pore waters of the control. Water-extracted concentrations of Fe, Mg, and Si in the sediments were lower, and P was higher, than in the control. Presence of P. crispus generally enhanced concentration gradients of elements between pore waters and overlying waters but not for P. The growth of P. crispus was associated with an increase in water pH and formation of root plaques, resulting in complex effects on the sediment nutritional status
Mitochondrial metagenomics: letting the genes out of the bottle
‘Mitochondrial metagenomics’ (MMG) is a methodology for shotgun sequencing of total DNA from specimen mixtures and subsequent bioinformatic extraction of mitochondrial sequences. The approach can be applied to phylogenetic analysis of taxonomically selected taxa, as an economical alternative to mitogenome sequencing from individual species, or to environmental samples of mixed specimens, such as from mass trapping of invertebrates. The routine generation of mitochondrial genome sequences has great potential both for systematics and community phylogenetics. Mapping of reads from low-coverage shotgun sequencing of environmental samples also makes it possible to obtain data on spatial and temporal turnover in whole-community phylogenetic and species composition, even in complex ecosystems where species-level taxonomy and biodiversity patterns are poorly known. In addition, read mapping can produce information on species biomass, and potentially allows quantification of within-species genetic variation. The success of MMG relies on the formation of numerous mitochondrial genome contigs, achievable with standard genome assemblers, but various challenges for the efficiency of assembly remain, particularly in the face of variable relative species abundance and intra-specific genetic variation. Nevertheless, several studies have demonstrated the power of mitogenomes from MMG for accurate phylogenetic placement, evolutionary analysis of species traits, biodiversity discovery and the establishment of species distribution patterns; it offers a promising avenue for unifying the ecological and evolutionary understanding of species diversity
Tunable Quantum Fluctuation-Controlled Coherent Spin Dynamics
Temporal evolution of a macroscopic condensate of ultra cold atoms is usually
driven by mean field potentials, either due to scattering between atoms or due
to coupling to external fields; and coherent quantum dynamics have been
observed in various cold-atom experiments. In this article, we report results
of studies of a class of quantum spin dynamics which are purely driven by zero
point quantum fluctuations of spin collective coordinates. Unlike the usual
mean-field coherent dynamics, quantum fluctuation-controlled spin dynamics or
QFCSD studied here are very sensitive to variation of quantum fluctuations and
can be tuned by four to five order of magnitude using optical lattices. They
have unique dependence on optical lattice potential depths and quadratic Zeeman
fields. QFCSD can be potentially used to calibrate quantum fluctuations and
investigate correlated fluctuations and various universal scaling properties
near quantum critical points.Comment: 14 pages, 12 figures included; including detailed discussions on
thermal effects, trapping potentials and spin exchange losses. (To appear in
PRA
Construction of localized wave functions for a disordered optical lattice and analysis of the resulting Hubbard model parameters
We propose a method to construct localized single particle wave functions
using imaginary time projection and thereby determine lattice Hamiltonian
parameters. We apply the method to a specific disordered potential generated by
an optical lattice experiment and calculate for each instance of disorder, the
equivalent lattice model parameters. The probability distributions of the
Hubbard parameters are then determined. Tests of localization and eigen-energy
convergence are examined.Comment: 10 pages, 16 figure
- …