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Abstract 

An incubation experiment was performed on Potamogeton crispus (P. crispus) using sediment 

collected from Lake Tangxunhu in the center of China, in order to determine the effects of 

plant growth on Fe, Si, Cu, Zn, Mn, Mg, P and Ca concentrations in the sediments and 

overlying waters. After three months of incubation, Ca, Mg and Si concentrations in the water 

column were significantly lower, and P and Cu concentrations were significantly higher than 

in unplanted controls. The effect of P. crispus growth on sediment pore waters and 

water-extractable elements varied. Concentrations of Ca, Mg, Si, Fe, Cu and Zn were 

significantly higher, and P was significantly lower, than in pore waters of the control. 

Water-extracted concentrations of Fe, Mg and Si in the sediments were lower, and P was 

higher, than in the control. P. crispus growth helped to Ca, Mg and Si reserve in sediment, 

while transported P from sediment to water. The growth of P. crispus was associated with an 

increase in water pH and formation of root plaques, resulting in complex effects on the 

sediment nutritional status. 

 

 

 

 

 



1. Introduction 

Submerged macrophytes are of particular importance in aquatic ecosystems as they link 

processes in the bottom sediments with those in the overlying water column (Schneider & 

Melzer, 2004). Macrophytes perform many important functions, including reduction of 

near-bed water velocities, which enhances sedimentation rates of fine particles (Madsen et al., 

2001), and increasing sediment oxidation-reduction potential through leakage of oxygen from 

plant roots, which increases oxidation of sulfides and brings about formation of metallic 

plaques around roots (Carpenter & Lodge, 1986). These processes can have important effects 

on sediment biogeochemistry, including increased variation of pore water concentrations of 

phosphates and metal cations (Wigand et al., 1997). 

 

Physiological experiments on macrophyte growth in relation to nutrient supply have identified 

bottom sediments as the major source of nutrition, with consequent effects on sediment 

nutrient availability and speciation (Goulet & Pick, 2001). Physical and chemical properties of 

lake sediments can therefore act as a potential delimiter of growth, but these properties are in 

turn also influenced by macrophytes. Different species of macrophytes vary in their tolerance 

to different types of substrate. For example, Chara hispida and Potamogeton coloratus 

commonly inhabit peaty substrates that are high in both nitrogen and carbon (Schneider & 

Melzer, 2004) while P. pectinatus tends to be associated with low concentrations of sediment 

total phosphorus (Schneider & Melzer, 2004).  

 

Curly-leaved pondweed, Potamogeton crispus L. (P. crispus), is a submerged aquatic plant 



that behaves as a winter annual through the production of summer-dormant apices (Catling & 

Dobson, 1985). P. crispus obtains most of its nutrition through the roots, so biomass, shoot 

density and tissue nutrient concentrations are primarily determined by sediment type 

(Chambers et al., 1989). However, growth of P. crispus can result in depletion of water 

column phosphorus and nitrogen concentrations, and decreases in chemical oxygen demand 

(COD), while also producing increases in water transparency and dissolved oxygen (Jin et al., 

1994; Dai et al., 1999; Wang et al., 2002). P. crispus can also accumulate metals such as Fe, 

Pb, Ni, Mn and Cu (Ali et al., 2000), making it a suitable candidate for bioremediation of 

polluted waters.  

 

Research into the effects of growth of submerged plants on the ambient nutritional 

environment has focused mostly on changes in phosphorus availability and releases from the 

bottom sediments (Jaynes & Carpenter, 1986, Wigand et al., 1997, Stephen et al., 1997); 

further work is required to understand how other nutritional factors are influenced by aquatic 

macrophytes. The objectives of this study were therefore to quantify the effects of P. crispus 

growth on nutrient concentrations in the water column and sediments. We transplanted P. 

crispus plants in sediments collected from Lake Tangxunhu in the center of China to: (i) 

investigate the P. crispus growth in Lake Tangxunhu sediments and (ii) compare the variations 

of nutrient concentrations in the overlying waters, pore waters and sediments between P. 

crispus presence and absence. We hypothesized that P. crispus growth could exert a significant 

influence on nutrient characteristics in the Lake Tangxunhu sediment and water, in association 

with changes in water pH (Li et al., 1992), and that there may be a considerable rhizosphere 



oxidation layer formed around the roots of the plant (Hupfer & Dollan, 2003),  

 

2. Methods 

Study site 

Lake Tangxunhu is located south-east of Wuhan City, China, adjacent to the middle reaches of 

Changjiang River. The lake has an area of 36.6 km
2
, perimeter of 83.2 km, and a mean depth 

of 3.1 m (Fig. 1). There are nine point sources of nutrients around the lake, most of which are 

wastewater discharges. Lake Tangxunhu was considered to be meso-eutrophic from 

assessments in 2003 (Wu et al., 2005) though there are indications that water quality in the 

lake has deteriorated further in 2006 (Environment Status Communique of Wuhan City, 2006). 

 

Sediment sampling 

Surface sediment samples were collected from Lake Tangxunhu on 9 December 2005 with a 

Petersen grasp sampler.  This sampler effectively integrates surface sediments to a depth of 

around 15 cm.  Samples were collected at a central site positioned at 30º25.098’ N and 114º

22.633’ E (Fig.1). 

 

Additional sediment from the grab samples of Lake Tangxunhu was used for determination of 

nutrient concentrations in the sediments. Wet sediments were extracted by Mehilich3 reagent 

(0.2mol L
-1

 HOAc, 0.25mol L
-1

 NH4NO3, 0.015mol L
-1

 NH4F, 0.013mol L
-1

 HNO3, 0.001mol 

L
-1

 EDTA of pH c. 2.5) for analysis of bioavailable nutrients. Dried sediments were digested 

by concentrated nitric acid for 30 min in a microwave oven (Mars5, CEM) for total nutrients 



analysis. Available and total Ca, Cu, Fe, Mg, Mn, Si and Zn were analyzed with an Inductively 

Coupled Plasma-Atomic Emission Spectroflame (ICP-AES; Varian Vista-MPX) and 

phosphorus concentrations were determined using the molybdenum blue colorimetric method 

(Bao, 2000).  

 

Transplantation experiments 

Whole plants of P. crispus were collected from a pond isolated from Lake Nanhu on 10 Dec. 

2005. Plants were placed in tap water for seven days, and five shoot tips (c. 1 g each) were 

then planted in 10 L plastic containers containing about 2 L of the homogenized sediment 

collected previously from Lake Tangxunhu. A container filled with sediment but without P. 

crispus acted as a control. There were four replicate containers of the planted P. crispus 

treatment and three replicates of the unplanted control. Distilled water was added to each 

container to produce a volume of sediment to overlying water of 1:3. During the experiment 

the volume of overlying water was monitored once a week and distilled water was added to 

maintain a constant volume. The transplantation experiments were carried out under shed 

covered with plastic film outside. 

  

On 20 Mar. 2006, after P. crispus had been growing for 3 months, pH was measured in the 

overlying water of the treatments and controls, and an aliquot of water was sampled by pipette 

and filtered through a 0.45 µm GF/C filter. Harvested P. crispus plants were rinsed with tap 

water and then with distilled water in a process that also removed plaques adhering to the 

roots. Plants were separated into roots and shoots, and carefully dried of adhering water using 



absorbent paper, for measurement of fresh weight (FW). Plants were dried at 105 
o
C for 30 

min and maintained at 60 
o
C until constant dry weight (DW) was attained. The dry material 

was ground and stored in sealed plastic Ziplock® bags at room temperature. Homogenized 

sediment was sampled in duplicate from one container. A sediment sub-sample was 

centrifuged at 3000 rpm for 20 min and the resulting pore water was filtered through a 0.45 

µm GF/C filter. Another sediment sub-sample was extracted by 20 mL H2O, then the 

supernatant liquid was filtered through a 0.45 µm GF/C filter to analyze water soluble 

nutrients in sediment. The dried shoot and root samples were dissolved with 5 mL 

concentrated nitric acid using microwave digestion to determine nutrient concentration in 

plant tissue. Filtered overlying waters, filtered pore waters, water-extracted samples of bottom 

sediments and digested plant material were all analyzed for Ca, Cu, Fe, Mg, Mn, Si, Zn 

(ICP-AES, Varian Vista-MPX) and P (molybdenum blue colorimetric method). 

 

Statistical procedure 

Data were analyzed with the Statistical Analysis System 8.1 (SAS Institute Inc. 1999-2000). 

Data from the plants, sediments and waters were analyzed statistically by one-way analysis of 

variance (ANOVA) with subsequent mean separation by the least significant difference to test 

for significance of variations. Statistically significant differences were defined at the level P < 

0.05. 

 

3. Results 

Lake sediment characteristics 



Table 1 shows total and Mehilich3-extracted nutrient and micronutrient concentrations in the 

original sediment collected from Lake Tangxunhu. Levels of Ca were higher in the extracted 

portion relative to the other nutrients, while levels of Fe, P and Zn were lower compared with 

Si, Mg, Mn and Cu. In the case of phosphorus <0.5% of this nutrient was extractable with 

Mehilich3 reagent whereas 22% of the calcium was extractable. 

 

Biomass and nutrient content 

Shoots biomass of P. crispus plants increased from 5.00 ± 0.16 g pot
-1

 to 9.07 ± 0.77 g pot
-1

 

from 17 Dec, 2005, when shoots were first transplanted, to 20 Mar, 2006, when shoots were 

harvested. P. crispus roots weighed 0.67 ± 0.24 g pot
-1

 when harvested after three months of 

growth. Water content of the initial P. crispus shoots (90.3 ± 0.18%) was similar to the shoots 

(89.1 ± 0.5%) and roots (91.3 ± 0.4%) at harvest while there was significant difference 

between them. The ratio of mass of roots/shoots was 0.075 ± 0.03 (fresh weight ratio) and 

0.0597 ± 0.02 (dry weight ratio) (Table 2). The root/shoot FW ratio was higher than the DW 

ratio, coincident with higher water content in roots compared to shoots. 

 

Nutrient levels decreased in order of Ca > P > Fe > Si > Mg > Zn > Mn > Cu in the shoots of P. 

crispus, and in order Fe > Ca > Si > P > Mg > Mn > Zn > Cu in the roots (Fig. 2). Compared 

with the initial P. crispus shoots, harvested shoots had significantly higher (P < 0.05) Ca, Si, 

Mg and Mn and lower P, while Fe, Cu and Zn were not significantly different (P > 0.05). 

Nutrient content in P. crispus tissue was significantly different between shoots and roots. 

Compared to the shoots, P. crispus roots contained significantly higher concentrations of Fe, 



Si, Zn, Mn and Cu (P < 0.05), among which the Fe content in roots was nine-fold higher than 

Fe content in shoots. Concentrations of Mg and P in roots were significantly lower than in 

shoots (P < 0.05) and Ca was not significantly different between the two tissue types.  

 

Overlying and pore waters 

P. crispus growth significantly elevated pH of the overlying waters with mean pH of 8.58 ± 

0.10 in the absence of P. crispus compared to 9.91 ± 0.04 when P. crispus was present (P < 

0.05). Concentrations of nutrients were different in the overlying waters and pore waters 

(Table 3) but calcium was the dominant form in both cases. Compared with nutrient levels in 

the overlying waters, the pore waters had significantly higher Ca, Mg, Si and Mn (P < 0.05), 

and especially for Mn, concentration was much higher in the pore waters (thousand-fold 

higher than that of the overlying waters). 

  

The effect of presence of P. crispus on nutrient concentrations in the overlying waters and the 

pore waters varied among the different elements. Concentrations of Ca, Mg and Si in the pore 

waters were significantly higher in treatments containing P. crispus but lower in the overlying 

waters compared with the control. P. crispus treatments had elevated concentrations of P in the 

overlying waters but lower in the pore waters, while Cu concentration was significantly 

elevated in both pore waters and overlying waters compared with the control. Zn and Fe 

concentrations in overlying waters were below detection limits (<0.004 mg L
-1

) in both test 

and control samples which was coincident with low extracted portion in sediment of Zn and 

Fe, while in the pore waters Zn and Fe concentrations were, respectively, 0.034 ± 0.01 mg 



L
-1

 and below detection limits in the control compared with 0.11 ± 0.03 mg L
-1

 and 0.0435 

± 0.002 mg L
-1

 in the treatment. The influence of P. crispus on Mn concentrations in the 

overlying waters and the sediment pore waters was not significant.  

 

Sediment nutrient availability  

Water-extracted nutrient availability changed between sediments in the control and in the 

presence of P. crispus. Water-extracted Si, Fe and Mg concentrations were significantly lower 

(P < 0.05) while P was significantly higher in the treatments compared with the control (Table 

4). There was no difference in water-extracted Ca, Zn, Mn and Cu between the control and the 

treatments.  

 

4. Discussion 

Compared with a similar study of P. crispus in eutrophic lakes of West Poland 

(Samecka-Cymerman & Kempers, 2001), the sediments of Lake Tangxunhu are slightly 

enriched in Fe and Mn, most likely reflecting the mineralogical origin of sediments from the 

respective lake catchments. In our study it is likely that the high levels of Fe in P. crispus were 

a result of abundant Fe in the sediment of Lake Tangxunhu, although only 1 % of Fe in the 

original sediment was extractable. It is also possible that P. crispus growing in the sediments 

may have depleted some of the extractable Fe prior to the study. P. crispus roots in Lake 

Tangxunhu had higher concentrations of Fe, which showed higher rates of accumulation in 

roots compared to shoots (Vardanyan & Ingole, 2006). Fe levels varied a lot in P. crispus 

grown in different lakes. For example, Fe content in P. crispus in Nainital lake was 492 mg 



kg
-1

 dw (Ali, et al., 1999), while in Sevan Lake was 25,180 mg kg
-1

 dw (Vardanyan & Ingole, 

2006). Our results support the dependence of nutrient concentrations in roots on 

concentrations in the sediments, as noted for eelgrass (Zostera marina L.) across a gradient of 

nutrient-enriched sediment stations in a shallow, brackish water fjord (Lyngby & Brix, 1983). 

This finding reinforces the potential for use of above-ground and below-ground macrophyte 

parts for detecting bioaccumulation of nutrients and trace elements across gradients of 

enrichment of the water column and sediment pore waters (Lyngby & Brix, 1983). 

 

P. crispus growth influenced nutrient concentrations in overlying waters and sediments, but 

the effects varied among different elements. Growth of P. crispus decreased water-extracted Si, 

Fe and Mg concentrations in the sediments, which was likely due to a combination of root 

uptake of these elements and oxygen release, which would influence the sediment redox 

potential. In a reducing environment commonly associated with enriched bottom sediments, 

there is likely to be high solubility of phosphorus as well as other elements (Barko & Smart, 

1980), so P. crispus is therefore likely to obtain most of its nutrition through the roots 

(Chambers, et al., 1989). Oxygen release in the root microzone raises the oxidation-reduction 

potential of sediment, however, causing precipitation of ferric and manganic oxyhydroxides 

on or around plant roots, which may reduce diffusion of these elements to the overlying water 

(Jaynes & Carpenter, 1986). The existence of these microzones is likely to provide 

opportunities for greater diversity of the microbial flora and a range of associated redox 

transformations (Connell & Walker, 2001). 

 



P. crispus growth also had an influence on nutrient concentrations in overlying waters in terms 

of significant decreases in Ca, Mg and Si concentration, which might be related to the 

increased pH levels of overlying waters. Concentrations of various metals (e.g. Al, Mn and Zn) 

have, for example, been found to be strongly negatively correlated with water pH 

(Samecka-Cymerman & Kempers, 2001). Furthermore, mature leaves of P. crispus were 

covered with thick mineral crusts. These crusts contained calcite, quartz, apatite and aragonite 

(Waisel et al., 1990), which meant that Ca and Si could deposit on P. crispus leaves and 

potentially decrease Ca and Si concentrations in the water. Although P. crispus growth 

obtained most of its nutrients through the roots, nutrient uptake and deposition by leaves of P. 

crispus from water could not be excluded. 

 

The P. crispus roots generally contained higher contents of Fe, Si, Zn, Mn and Cu than shoots, 

as expected on the basis of the roots being the major anatomical structure responsible for 

uptake of micronutrients and macronutrients. Furthermore, visible red-brown plaques were 

observed around the roots of P. crispus growing in Lake Tangxunhu sediments. These 

precipitates are known to be rich in Fe, Ca, Mn, Si and P (Hupfer & Dollan, 2003), and they 

coincided with higher Fe, Si and Mn content in P. crispus roots in our results. The plant root 

plaques appear to act as regions of element accumulation, which may be of nutritional benefit 

to the plants, but conversely high metal concentrations in the plaques have potential to 

generate phytotoxicity (Van Der Welle et al., 2007). Other studies have shown that the plaques 

may bind elements as relatively insoluble precipitates which are not immediately taken up by 

the plants and may in fact protect them against excessive metal uptake (Christensen & Wigand, 



1998). While P levels can be high in root plaques (Hupfer & Dollan, 2003), the roots in our 

study did not show especially high rates of P accumulation, possibly because the P was bound 

to oxidized Fe and Mn precipitates in the plaques. Views on the role of the plaques on P 

uptake from other studies have been somewhat divergent, with Fe plaques considered not to 

significantly affect the concentration of P in plant tissues (Batty et al, 2002) but also to 

generate increases in P content in roots (Hupfer & Dollan, 2003). According to P content 

ranges in vegetable tissues (0.20-0.72%) (Walsh, 1973), P content in P. crispus shoots 

(0.51-0.66%) and roots (0.20%) is within a typical range for non-woody plants. Compared 

with P content of P. crispus growing in highly eutrophied Lake Müggelsee (7.1 mg g
-1

 dw for 

shoots and 6.5 mg g
-1

 dw for roots without plaques, and 31.4 mg g
-1

 dw for roots with plaques) 

(Hupfer & Dollan, 2003), P content of roots in our study are relatively low, which may be 

related to the low TP content (0.561 mg g
-1

 dw) in sediment of Lake Tangxunhu compared 

with Lake Müggelsee (2.9 mg g
-1

 dw). 

 

P. crispus growth had elevated Ca, Mg and Si concentrations in overlying water, but lower in 

pore waters, suggesting P. crispus growth helped to Ca, Mg and Si nutrients reserve in 

sediment, while the concentration gradients (the difference in concentration between the pore 

water and the overlying water) for Ca, Mg and Si was greater when P. crispus was present, 

indicating greater potential for release of these elements from sediment to overlying waters. In 

the case of P, P. crispus growth had elevated P concentration in the overlying water, but lower 

in pore waters, suggesting P. crispus growth actively transported P from sediment to water, 

while P. crispus growth decreased the release potential from sediment to water by decreasing 



the concentration gradient between pore waters and overlying waters, contrary to findings by 

Stephen et al. (1997). Morphological differences amongst macrophyte species (e.g., root/shoot 

ratio, canopy type, growth form) and differences in root oxygenation capabilities may partly 

explain the discrepancy but may only be elucidated by more detailed morphological 

investigation.                                                                   

 

Conclusions 

Element concentrations were higher in sediment pore waters than in overlying waters in all 

cases, implying that there would be a flux from the sediments to the overlying water column. P. 

crispus growth helped to Ca, Mg and Si nutrients reserve in sediment, while advanced great 

potential for release of these elements from sediment to overlying waters. In the case of P, P. 

crispus growth actively transported P from sediment to water, while decreased the release 

potential from sediment to water. The presence of P. crispus also significantly elevated pH 

levels in the water column which likely played a role in deposition of mineral crusts on the 

plant leaves and may have led to the reduced levels of Ca, Mg and Si in the water column. 

Similarly, evidence of microzones adjacent to plant roots, denoted by visible red-brown 

plaques, may have played an important role in the availability of elements for uptake by the 

plant roots and may partially explain observations of elevated levels of Fe, Si, Zn, Mn and Cu 

in the roots compared with the levels present in the sediments. No generalizations could be 

made about the relative accumulation rates of elements in below-ground and above-ground 

tissues for the elements investigated in this study, and each element needed to be considered 

separately. 
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List of Tables 

 

Table 1. Total and Mehilich3-extracted element concentrations (± S.D.) in Lake Tangxunhu 

sediment expressed relative to sediment dry weight. 

Elements 
Total 

(g kg
-1

) 

Extracted 

(g kg
-1

) 

Extracted/total 

(%) 

Fe 48.7±1.7 0.489 ± 0.133 1.00 

Si 10.0 ± 0.3 0.490 ± 0.103 4.89 

Ca 3.82 ± 0.28 0.855 ± 0.094 22.4 

Mg 3.89 ± 0.09 0.201 ± 0.084 5.15 

Mn 
0.784 ± 

0.003 
0.0484 ± 0.015 6.18 

P 
0.561 ± 

0.007 
0.0026 ± 0.001 0.47 

Zn 
0.116 ± 

0.005 

0. 001 ± 

0.0003 
0.86 

Cu 
0.064 ± 

0.003 

0.0016 ± 

0.0003 
2.48 



Table 2. Shoot and root biomass and root/shoot mass ratio (relative to FW or DW) (± S.D.) 

of P. crispus grown in Lake Tangxunhu sediment. Note: the different lower case letters in the 

same line indicate a significant difference (p < 0.05) among biomass of initial shoot, harvested 

shoot and root. 

 

 Initial shoot biomass 
Harvested biomass 

Shoot Root Root/shoot 

FW (g pot
-1

) 5.00  ± 0.16b 9.07  ± 0.77a 0.67  ± 0.24c 0.075 ± 0.03 

DW (g pot
-1

) 0.48 ± 0.01b 0.99  ± 0.08a 0.058  ± 0.02c 0.060 ± 0.02 

Water content (%) 90.3  ± 0.18b 89.1  ± 0.5c 91.3  ± 0.4a - 



Table 3. Concentrations (± S.D.) of dissolved elements in overlying waters and pore waters of sediment with and without P. crispus. The 1 

gradient represents the difference in concentration between the pore water and the overlying water. The different lower case letters in the same 2 

line indicate a significant difference (p < 0.05) in nutrient content between treatment and control. 3 

Elements Overlying water  

    plant             no plant 

Pore water  

     plant            no plant 

Gradient 

      plant            no plant 

Ca (mg L
-1

) 10.76 ± 0.73d 12.31 ± 0.34c 18.33 ± 0.69a 15.80 ± 0.23b 7.57 3.49 

Mg (mg L
-1

) 2.09 ± 0.17d 2.58 ± 0.13c 4.72 ± 0.22a 3.88 ± 0.15b 2.63 1.30 

Si (mg L
-1

) 0.45 ± 0.10d 1.79 ± 0.25c 8.19 ± 0.43a 5.40 ± 0.26b 7.74 3.61 

Cu (µg L
-1

) 6.839 ± 0.35a 3.627 ± 0.19b 5.558 ± 1.65ab 4.190 ± 0.27b - 1.28 0.563 

P (µg L
-1

) 7.808 ± 1.39b 0.966 ± 0.01c 5.428 ± 1.36b 31.39 ± 3.34a - 2.38 30.4 

Mn (µg L
-1

) 1.497 ± 0.40b 0.885 ± 0.14b 1.228×10
3
 ± 

0.17a 

0.172×10
3
 ± 

0.01a 

1227 171 

.4 



Table 4. Concentrations in mg kg
-1

 (± S.D.) of water-extracted nutrients in Lake Tangxunhu 5 

sediment, with and without P. crispus. The different lower case letters in the same line indicate 6 

a significant difference (p < 0.05) in nutrient contents between treatment and control. 7 

 8 

Elements P. crispus presence P. crispus absence 

Si 124.2 ± 12.4b 447.6 ± 82.2a 

Ca 71.0 ± 5.0a 78.8 ± 6.6a 

Fe 24.4 ± 1.2b 61.7 ± 10.7a 

Mg 14.70 ± 0.47b 25.05 ± 3.6a 

Zn 1.333 ± 0.32a 1.108 ± 0.23a 

Mn 0.3588 ± 0.10a 0.5391 ± 0.02a 

P 0.4475 ± 0.06a 0.1795 ± 0.02b 

Cu 0.2976 ± 0.03a 0.3969 ± 0.06a 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

17 



Figure captions 18 

 19 

Figure 1. Map showing the site of sampling sediment in Lake Tangxunhu of Wuhan, China. 20 

Figure 2. P, Ca, Mg, Cu, Zn, Fe, Mn and Si contents in shoots and roots of P. crispus grown in 21 

Lake Tangxunhu sediment (n=4). Means and standard deviation are based on dry plant weight. 22 

The different lower case letters for the same nutrient element indicate a significant difference 23 

(p < 0.05) in nutrient content between initial shoot, harvested shoot and root. 24 
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Fig. 1 43 
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Fig. 2 56 
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