research

Tunable Quantum Fluctuation-Controlled Coherent Spin Dynamics

Abstract

Temporal evolution of a macroscopic condensate of ultra cold atoms is usually driven by mean field potentials, either due to scattering between atoms or due to coupling to external fields; and coherent quantum dynamics have been observed in various cold-atom experiments. In this article, we report results of studies of a class of quantum spin dynamics which are purely driven by zero point quantum fluctuations of spin collective coordinates. Unlike the usual mean-field coherent dynamics, quantum fluctuation-controlled spin dynamics or QFCSD studied here are very sensitive to variation of quantum fluctuations and can be tuned by four to five order of magnitude using optical lattices. They have unique dependence on optical lattice potential depths and quadratic Zeeman fields. QFCSD can be potentially used to calibrate quantum fluctuations and investigate correlated fluctuations and various universal scaling properties near quantum critical points.Comment: 14 pages, 12 figures included; including detailed discussions on thermal effects, trapping potentials and spin exchange losses. (To appear in PRA

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019