Temporal evolution of a macroscopic condensate of ultra cold atoms is usually
driven by mean field potentials, either due to scattering between atoms or due
to coupling to external fields; and coherent quantum dynamics have been
observed in various cold-atom experiments. In this article, we report results
of studies of a class of quantum spin dynamics which are purely driven by zero
point quantum fluctuations of spin collective coordinates. Unlike the usual
mean-field coherent dynamics, quantum fluctuation-controlled spin dynamics or
QFCSD studied here are very sensitive to variation of quantum fluctuations and
can be tuned by four to five order of magnitude using optical lattices. They
have unique dependence on optical lattice potential depths and quadratic Zeeman
fields. QFCSD can be potentially used to calibrate quantum fluctuations and
investigate correlated fluctuations and various universal scaling properties
near quantum critical points.Comment: 14 pages, 12 figures included; including detailed discussions on
thermal effects, trapping potentials and spin exchange losses. (To appear in
PRA