12 research outputs found

    Multi-parameter quantitative assessment of 3D geological models for complex fault-block oil reservoirs

    No full text
    In the field of 3D geologic modeling, researchers often pay more attention to modeling methods and workflows, but neglect the quantitative evaluation of models. If the evaluation is narrowed to the same reservoir type, the comparability and practicality of quantitative assessment will be emerging. The evaluation system should include three parts: data verification, geological understanding and process check. Data verification mainly involves testing the accuracy of local prediction with actual data, and geological understanding is to examine whether the global estimation honors geological principles and prior insights. Process check is also indispensable to avoid occasionality. To this end, we produced a set of assessment criteria, taking complex fault-block sandstone oil reservoir as an example. To be specific, thirteen characteristic parameters were totally selected, setting weights according to their rated importance, formulating three-level evaluation standards in a centesimal system for each characteristic parameter, and obtaining the final assessment based on the cumulative score. The results indicate that such evaluation can not only access the quality of the model objectively and comprehensively, but also identify the aspects in need of improvement through the deduction items. Key words: reservoir characterization, geological modeling, quality evaluation, characteristic parameter, reserves estimation, fault-block oil reservoi

    Simultaneous enhancement of strength and ductility with nano dispersoids in nano and ultrafine grain metals: a brief review

    No full text
    Grain refinement is the most universal and effective method of strengthening metallic materials, which is known as the “Hall-Petch” relationship. However, when grain size is refined to sub-micro regime (Ultrafine Grain, UFG) or even nano regime (Nano Grain, NG), the plasticity of metallic materials becomes poor. Massive studies indicate that the low strain hardening ability resulted from the enhanced dynamic recovery and lack of dislocation accumulation in fine grains is the main reason for low ductility in UFG/NG metals. To resolve this “strength-ductility” conflict, different strategies have been taken, like bimodal/multimodal structure, nanotwins, gradient structure and intragranular nano dispersoids. Among them, the introduction of nano dispersoids into the fine grains attracted lots of attention due to its wide applicability and great success in simultaneously increasing the strength and ductility of the UFG/NG metal. In addition to the enhanced mechanical performance, the introduced second-phase particle may also bring some extraordinary functional properties into the metallic material. In this paper, a brief view of the strategies to improve ductility of the UFG/NG metals and the relevant toughening mechanisms are revealed. Special attentions are paid to the utilization of intragranular nano dispersoids in Aluminum alloys

    Dexamethasone promotes the endoplasmic reticulum stress response of bone marrow mesenchymal stem cells by activating the PERK‐Nrf2 signaling pathway

    No full text
    Abstract The pathogenesis of steroid‐induced avascular necrosis of femoral head (SANFH) is complex, and there is a lack of effective early prevention method. The aim of the present study was to evaluate the effect of dexamethasone (DEX) on the biological behavior of bone marrow mesenchymal stem cells (BMSCs) and to explore the possibility of DEX in the clinical treatment of SANFH. The effect of DEX on the proliferation of BMSCs was evaluated by Counting Kit‐8 assay, western blot assay, and enzyme‐linked immunosorbent assay. Flow cytometry and western blot assay were performed to detect the effect of DEX on the apoptosis of BMSCs. Quantitative real‐time PCR and western blot assay were performed to detect the effect of DEX on the expression of endoplasmic reticulum stress (ERS)‐related genes. Immunoblotting analysis was conducted for detecting the nuclear‐cytoplasmic distribution of Nrf2. DEX could significantly inhibit the proliferation of BMSCs and promote apoptosis of BMSCs. DEX could increase the expression of PERK, ATF6, and IRE1a, and induce nuclear translocation of Nrf2. The addition of ML385 could reverse the effect of DEX on BMSCs. DEX could activate the PERK‐Nrf2 pathway to promote ERS and finally affect the cell proliferation and apoptosis of BMSCs

    Pothole-rich Ultrathin WO3 Nanosheets that Trigger N≡N Bond Activation of Nitrogen for Direct Nitrate Photosynthesis

    No full text
    Nitrate is a raw ingredient for the production of fertilizer, gunpowder, and explosives. Developing an alternative approach to activate the N≡N bond of naturally abundant nitrogen to form nitrate under ambient conditions will be of importance. Herein, pothole‐rich WO3 was used to catalyse the activation of N≡N covalent triple bonds for the direct nitrate synthesis at room temperature. The pothole‐rich structure endues the WO3 nanosheet more dangling bonds and more easily excited high momentum electrons, which overcome the two major bottlenecks in N≡N bond activation, that is, poor binding of N2 to catalytic materials and the high energy involved in this reaction. The average rate of nitrate production is as high as 1.92 mg g−1 h−1 under ambient conditions, without any sacrificial agent or precious‐metal co‐catalysts. More generally, the concepts will initiate a new pathway for triggering inert catalytic reactions

    MiR-192-5p Alleviated Fibrosis and Inflammatory Responses of Tendon Cells by Targeting NFAT5

    No full text
    Objective. To explore the effect of microRNA (miR)-192-5p on the inflammatory and fibrotic responses of tendon cells. Methods. Tendon cells were treated with transforming growth factor-β1 (TGF-β1). The expression of miR-192-5p and nuclear factor of activated T cells 5 (NFAT5) in tendon cells were detected by RT-qPCR. The expressions of inflammatory and fibrosis-related factors were detected by RT-qPCR and Western blot. MiR-192-5p binds to NFAT5 targeting by TargetScan and dual-luciferase reporter gene assay. The expression of the NFAT5 gene was detected by RT-qPCR and Western blot. Detection of apoptosis in tendon cells by flow cytometry. Results. MiR-192-5p was downregulated in tendon cells, and the expression level gradually decreased with the prolong of TGF-β1 treatment. The expression of NFAT5 increased with the treatment time of TGF-β1. The expression of miR-192-5p decreased collagen III (COLIII), α smooth muscle actin (α-SMA), matrix metalloproteinase- (MMP-) 1, and MMP-8 expression, thereby inhibiting TGF-β1-induced fibrosis in tendon cells. The expression of miR-192-5p decreased the expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β, thereby alleviating TGF-β1-induced inflammatory response and reduce apoptosis in tendon cells. NFAT5 is a direct target of miR-192-5p in tendon cells. The upregulation of NFAT5 reversed the effect of miR-192-5p on the fibrotic activity and inflammatory response of TGF-β1-stimulated tendon cells. Conclusions. MiR-192-5p alleviates fibrosis and inflammatory responses of tendon cells by targeting NFAT5
    corecore