66 research outputs found

    Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae

    Get PDF
    Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable and cost-effective energy resources. Advanced biofuels have potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. Microbial biosynthesis is generally considered as an environmental friendly refinery process, and fatty acid biosynthesis is an attractive route to synthesize chemicals and especially drop-in biofuels due to the high degree of reduction of fatty acids. The robustness and excellent accessibility to molecular genetics make the yeast S. cerevisiae a suitable host for the production of biofuels, chemicals and pharmaceuticals, and recent advances in metabolic engineering as well as systems and synthetic biology allow us to engineer the yeast fatty acid metabolism and modification pathways for production of advanced biofuels and chemicals

    Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae

    Get PDF
    Background: Low catalytic activities of pathway enzymes are often a limitation when using microbial based chemical production. Recent studies indicated that the enzyme activity of aldehyde decarbonylase (AD) is a critical bottleneck for alkane biosynthesis in Saccharomyces cerevisiae. We therefore performed functional screening to identify efficient ADs that can improve alkane production by S. cerevisiae

    Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae

    Get PDF
    Background: In vivo production of fatty acid-derived chemicals in Saccharomyces cerevisiae requires strategies to increase the intracellular supply of either acyl-CoA or free fatty acids (FFAs), since their cytosolic concentrations are quite low in a natural state for this organism. Deletion of the fatty acyl-CoA synthetase genes FAA1 and FAA4 is an effective and straightforward way to disable re-activation of fatty acids and drastically increase FFA levels. However, this strategy causes FFA over-accumulation and consequential release to the extracellular medium, which results in a significant loss of precursors that compromises the process yield. In the present study, we aimed for dynamic expression of the fatty acyl-CoA synthetase gene FAA1 to regulate FFA and acyl-CoA pools in order to improve fatty alcohol production yields. Results: We analyzed the metabolite dynamics of a faa1 Delta faa4 Delta strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high levels of FFAs not being converted to the final product. To address the issue, we expressed the MmCAR + Adh5 pathway together with a fatty acyl-CoA reductase from Marinobacter aquaeolei to enable fatty alcohol production simultaneously from FFA and acyl-CoA, respectively. Then, we expressed FAA1 under the control of different promoters in order to balance FFA and acyl-CoA interconversion rates and to achieve optimal levels for conversion to fatty alcohols. Expressing FAA1 under control of the HXT1 promoter led to an increased accumulation of fatty alcohols per OD600 up to 41% while FFA levels were decreased by 63% compared with the control strain. Conclusions: Fine-tuning and dynamic regulation of key metabolic steps can be used to improve cell factories when the rates of downstream reactions are limiting. This avoids loss of precursors to the extracellular medium or to competing reactions, hereby potentially improving the process yield. The study also provides knowledge of a key point of fatty acid regulation and homeostasis, which can be used for future design of cells factories for fatty acid-derived chemicals

    Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene

    Get PDF
    Beta-elemene, a sesquiterpene and the major component of the medicinal herb Curcuma wenyujin, has antitumor activity against various types of cancer and could potentially serve as a potent antineoplastic drug. However, its current mode of production through extraction from plants has been inefficient and suffers from limited natural resources. Here, we engineered a yeast cell factory for the sustainable production of germacrene A, which can be transformed to beta-elemene by a one-step chemical reaction in vitro. Two heterologous germacrene A synthases (GASs) converting farnesyl pyrophosphate (FPP) to germacrene A were evaluated in yeast for their ability to produce germacrene A. Thereafter, several metabolic engineering strategies were used to improve the production level. Overexpression of truncated 3-hydroxyl-3-methylglutaryl-CoA reductase and fusion of FPP synthase with GAS, led to a sixfold increase in germacrene A production in shake-flask culture. Finally, 190.7 mg/l of germacrene A was achieved. The results reported in this study represent the highest titer of germacrene A reported to date. These results provide a basis for creating an efficient route for further industrial application re-placing the traditional extraction of beta-elemene from plant sources

    Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals

    Get PDF
    Production of chemicals and biofuels through microbial fermentation is an economical and sustainable alternative for traditional chemical synthesis. Here we present the construction of a Saccharomyces cerevisiae platform strain for high-level production of very-long-chain fatty acid (VLCFA)-derived chemicals. Through rewiring the native fatty acid elongation system and implementing a heterologous Mycobacteria FAS I system, we establish an increased biosynthesis of VLCFAs in S. cerevisiae. VLCFAs can be selectively modified towards the fatty alcohol docosanol (C22H46O) by expressing a specific fatty acid reductase. Expression of this enzyme is shown to impair cell growth due to consumption of VLCFA-CoAs. We therefore implement a dynamic control strategy for separating cell growth from docosanol production. We successfully establish high-level and selective docosanol production of 83.5 mg l(-1) in yeast. This approach will provide a universal strategy towards the production of similar high value chemicals in a more scalable, stable and sustainable manner

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease

    Expanding the terpenoid kingdom

    No full text
    Terpenoids are assembled from five-carbon (C5) units, which limits the available scaffold chemical space for the discovery of bioactive molecules. A combination of enzyme and metabolic engineering now enables biosynthesis of a plethora of non-natural C11 terpenoids
    corecore