192 research outputs found

    Control and Local Measurement of the Spin Chemical Potential in a Magnetic Insulator

    Full text link
    The spin chemical potential characterizes the tendency of spins to diffuse. Probing the spin chemical potential could provide insight into materials such as magnetic insulators and spin liquids and aid optimization of spintronic devices. Here, we introduce single-spin magnetometry as a generic platform for non-perturbative, nanoscale characterization of spin chemical potentials. We use this platform to investigate magnons in a magnetic insulator, surprisingly finding that the magnon chemical potential can be efficiently controlled by driving the system's ferromagnetic resonance. We introduce a symmetry-based two-fluid theory describing the underlying magnon processes, realize the first experimental determination of the local thermomagnonic torque, and illustrate the detection sensitivity using electrically controlled spin injection. Our results open the way for nanoscale control and imaging of spin transport in mesoscopic spin systems.Comment: 18 pages, 4 figure

    Activity Analysis, Summarization, and Visualization for Indoor Human Activity Monitoring

    Get PDF
    DOI 10.1109/TCSVT.2008.2005612In this work, we study how continuous video monitoring and intelligent video processing can be used in eldercare to assist the independent living of elders and to improve the efficiency of eldercare practice. More specifically, we develop an automated activity analysis and summarization for eldercare video monitoring. At the object level, we construct an advanced silhouette extraction, human detection and tracking algorithm for indoor environments. At the feature level, we develop an adaptive learning method to estimate the physical location and moving speed of a person from a single camera view without calibration. At the action level, we explore hierarchical decision tree and dimension reduction methods for human action recognition. We extract important ADL (activities of daily living) statistics for automated functional assessment. To test and evaluate the proposed algorithms and methods, we deploy the camera system in a real living environment for about a month and have collected more than 200 hours (in excess of 600 G bytes) of activity monitoring videos. Our extensive tests over these massive video datasets demonstrate that the proposed automated activity analysis system is very efficient.This work was supported in part by National Institute of Health under Grant 5R21AG026412

    A Magnon Scattering Platform

    Get PDF
    Scattering experiments have revolutionized our understanding of nature. Examples include the discovery of the nucleus, crystallography, and the discovery of the double helix structure of DNA. Scattering techniques differ by the type of the particles used, the interaction these particles have with target materials and the range of wavelengths used. Here, we demonstrate a new 2-dimensional table-top scattering platform for exploring magnetic properties of materials on mesoscopic length scales. Long lived, coherent magnonic excitations are generated in a thin film of YIG and scattered off a magnetic target deposited on its surface. The scattered waves are then recorded using a scanning NV center magnetometer that allows sub-wavelength imaging and operation under conditions ranging from cryogenic to ambient environment. While most scattering platforms measure only the intensity of the scattered waves, our imaging method allows for spatial determination of both amplitude and phase of the scattered waves thereby allowing for a systematic reconstruction of the target scattering potential. Our experimental results are consistent with theoretical predictions for such a geometry and reveal several unusual features of the magnetic response of the target, including suppression near the target edges and gradient in the direction perpendicular to the direction of surface wave propagation. Our results establish magnon scattering experiments as a new platform for studying correlated many-body systems

    Imaging phonon-mediated hydrodynamic flow in WTe2

    Full text link
    In the presence of interactions, electrons in condensed-matter systems can behave hydrodynamically, exhibiting phenomena associated with classical fluids, such as vortices and Poiseuille flow. In most conductors, electron-electron interactions are minimized by screening effects, hindering the search for hydrodynamic materials; however, recently, a class of semimetals has been reported to exhibit prominent interactions. Here we study the current flow in the layered semimetal tungsten ditelluride by imaging the local magnetic field using a nitrogen-vacancy defect in a diamond. We image the spatial current profile within three-dimensional tungsten ditelluride and find that it exhibits non-uniform current density, indicating hydrodynamic flow. Our temperature-resolve current profile measurements reveal a non-monotonic temperature dependence, with the strongest hydrodynamic effects at approximately 20 K. We also report ab initio calculations showing that electron-electron interactions are not explained by the Coulomb interaction alone, but are predominantly mediated by phonons. This provides a promising avenue in the search for hydrodynamic flow and prominent electron interactions in high-carrier-density materials.Comment: 11 pages, 4 figures + supplementary materia

    Identification of Enriched Driver Gene Alterations in Subgroups of Non-Small Cell Lung Cancer Patients Based on Histology and Smoking Status

    Get PDF
    BACKGROUND: Appropriate patient selection is needed for targeted therapies that are efficacious only in patients with specific genetic alterations. We aimed to define subgroups of patients with candidate driver genes in patients with non-small cell lung cancer. METHODS: Patients with primary lung cancer who underwent clinical genetic tests at Guangdong General Hospital were enrolled. Driver genes were detected by sequencing, high-resolution melt analysis, qPCR, or multiple PCR and RACE methods. RESULTS: 524 patients were enrolled in this study, and the differences in driver gene alterations among subgroups were analyzed based on histology and smoking status. In a subgroup of non-smokers with adenocarcinoma, EGFR was the most frequently altered gene, with a mutation rate of 49.8%, followed by EML4-ALK (9.3%), PTEN (9.1%), PIK3CA (5.2%), c-Met (4.8%), KRAS (4.5%), STK11 (2.7%), and BRAF (1.9%). The three most frequently altered genes in a subgroup of smokers with adenocarcinoma were EGFR (22.0%), STK11 (19.0%), and KRAS (12.0%). We only found EGFR (8.0%), c-Met (2.8%), and PIK3CA (2.6%) alterations in the non-smoker with squamous cell carcinoma (SCC) subgroup. PTEN (16.1%), STK11 (8.3%), and PIK3CA (7.2%) were the three most frequently enriched genes in smokers with SCC. DDR2 and FGFR2 only presented in smokers with SCC (4.4% and 2.2%, respectively). Among these four subgroups, the differences in EGFR, KRAS, and PTEN mutations were statistically significant. CONCLUSION: The distinct features of driver gene alterations in different subgroups based on histology and smoking status were helpful in defining patients for future clinical trials that target these genes. This study also suggests that we may consider patients with infrequent alterations of driver genes as having rare or orphan diseases that should be managed with special molecularly targeted therapies

    DPHL: A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery

    Get PDF
    To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to generate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    • …
    corecore