194 research outputs found

    Study on coalescence dynamics of unequal-sized microbubbles captive on solid substrate

    Get PDF
    The dynamics of bubble coalescence are of importance for a number of industrial processes, in which the size inequality of the parent bubbles plays a significant role in mass transport, topological change and overall motion. In this study, coalescence of unequal-sized microbubbles captive on a solid substrate was observed from cross-section view using synchrotron high-speed imaging technique and a microfluidic gas generation device. The bridging neck growth and surface wave propagation at the early stage of coalescence were investigated by experimental and numerical methods. The results show that theoretical half-power-law of neck growth rate is still valid when viscous effect is neglected. However, the inertial-capillary time scale is associated with the initial radius of the smaller parent microbubble. The surface wave propagation rate on the larger parent microbubble is proportional to the inertial-capillary time scale

    Analyzing And Modelling Sewage Discharge Process Of Typical Area Using Time Series Analysis Method

    Full text link
    This study is conducted to develop a mathematical model for typical sewage discharge area like residential area, commercial district and institutional area. An approach of time series analysis is applied to build the model involving model selection, parameter estimation, simulation and prediction. The description of sewage discharge process is divided into two parts: Periodic change and stationary random process. Periodic change process is simulated by harmonic analysis which composites a number of trigonometric function together. Stationary random process is described using Stationary time series including six steps: stationary test of the series; calculation of autocorrelation function and partial autocorrelation function for the series; identification of model type; determination of the model order; estimation of model parameters; verification of the model. In this paper daily variation process models for Sewage discharge of residential areas are built using this method. The numerical results show that the present method is effective and produce good agreements with the measured curve. Sewage discharge simulation of other areas like commercial area or institutional area could take the same way. This model could be used as a tool for uncertainty analysis of sewage discharge predicting. And the model also could be coupled with pipe flow model like SWMM to build sewage discharge analysis system in urban scale

    Understanding Microbubble Coalescence Using High-Speed Imaging and Lattice Boltzmann Method Simulation

    Get PDF
    poster abstractMicrobubble coalescence is one of the important research areas of bubble dynamics. The purpose of this research is to seek deeper understanding and relative mathematical relation on microbubble coalescence. To fulfill that, we conducted both experiments and simulations. For the part of experiment, we fabricated a microfluidic gas generator with better performance leading corresponding fluidic chemical reaction. After that we utilized ultrafast synchrotron X-ray imaging facility at the Advanced Photon Source of Argonne National Laboratory to capture the gas generating and microbubble merging phenomena using high speed imaging. These experiments show how the microbubbles with the same ratio contact and merge in the reaction channel and different concentration of reactants. As for the part of simulation, we lead the simulation basing on lattice Boltzmann method to simulate microbubble coalescence in water with unequal diameter ratio. Focuses are on the effects of size inequality of parent bubbles on the coalescence geometry and time. The “coalescence preference” of coalesced bubble closer to the larger parent bubble is well captured. A power-law relation between the preferential relative distance and size inequality is consistent to the recent experimental observations. Meanwhile, the coalescence time also exhibits power-law scaling, indicating that unequal bubbles coalesce faster than equal bubbles

    Increased fibroblast functionality on CNN2-loaded titania nanotubes

    Get PDF
    Infection and epithelial downgrowth are major problems associated with maxillofacial percutaneous implants. These complications are mainly due to the improper closure of the implant–skin interface. Therefore, designing a percutaneous implant that better promotes the formation of a stable soft tissue biologic seal around percutaneous sites is highly desirable. Additionally, the fibroblast has been proven to play an important role in the formation of biologic seals. In this study, titania nanotubes were filled with 11.2 kDa C-terminal CCN2 (connective tissue growth factor) fragment, which could exert full CCN2 activity to increase the biological functionality of fibroblasts. This drug delivery system was fabricated on a titanium implant surface. CCN2 was loaded into anodized titania nanotubes using a simplified lyophilization method and the loading efficiency was approximately 80%. Then, the release kinetics of CCN2 from these nanotubes was investigated. Furthermore, the influence of CCN2-loaded titania nanotubes on fibroblast functionality was examined. The results revealed increased fibroblast adhesion at 0.25, 0.5, 1, 2, 4, and 24 hours, increased fibroblast viability over the course of 5 days, as well as enhanced actin cytoskeleton organization on CCN2-loaded titania nanotubes surfaces compared to uncoated, unmodified counterparts. Therefore, the results from this in vitro study demonstrate that CCN2-loaded titania nanotubes have the ability to increase fibroblast functionality and should be further studied as a method of promoting the formation of a stable soft tissue biologic seal around percutaneous sites

    Overpotential decomposition enabled decoupling of complex kinetic processes in battery electrodes

    Full text link
    Identifying overpotential components of electrochemical systems enables quantitative analysis of polarization contributions of kinetic processes under practical operating conditions. However, the inherently coupled kinetic processes lead to an enormous challenge in measuring individual overpotentials, particularly in composite electrodes of lithium-ion batteries. Herein, the full decomposition of electrode overpotential is realized by the collaboration of single-layer structured particle electrode (SLPE) constructions and time-resolved potential measurements, explicitly revealing the evolution of kinetic processes. Perfect prediction of the discharging profiles is achieved via potential measurements on SLPEs, even in extreme polarization conditions. By decoupling overpotentials in different electrode/cell structures and material systems, the dominant limiting processes of battery rate performance are uncovered, based on which the optimization of electrochemical kinetics can be conducted. Our study not only shades light on decoupling complex kinetics in electrochemical systems, but also provides vitally significant guidance for the rational design of high-performance batteries

    Single Trace is All It Takes: Efficient Side-channel Attack on Dilithium

    Get PDF
    As the National Institute of Standards and Technology (NIST) concludes its post-quantum cryptography (PQC) competition, the winning algorithm, Dilithium, enters the deployment phase in 2024. This phase underscores the importance of conducting thorough practical security evaluations. Our study offers an in-depth side-channel analysis of Dilithium, showcasing the ability to recover the complete private key, s1{s}_1, within ten minutes using just two signatures and achieving a 60% success rate with a single signature. We focus on analyzing the polynomial addition in Dilithium, z=y+cs1z=y+{cs}_1, by breaking down the attack into two main phases: the recovery of yy and cs1{cs}_1 through side-channel attacks, followed by the resolution of a system of error-prone equations related to cs1{cs}_1. Employing Linear Regression-based profiled attacks enables the successful recovery of the full yy value with a 40% success rate without the necessity for initial filtering. The extraction of cs1{cs}_1 is further improved using a CNN model, which boasts an average success rate of 75%. A significant innovation of our research is the development of a constrained optimization-based residual analysis technique. This method efficiently recovers s1{s}_1 from a large set of error-containing equations concerning cs1{cs}_1, proving effective even when only 10% of the equations are accurate. We conduct a practical attack on the Dilithium2 implementation on an STM32F4 platform, demonstrating that typically two signatures are sufficient for complete private key recovery, with a single signature sufficing in optimal conditions. Using a general-purpose PC, the full private key can be reconstructed in ten minutes

    Comparative Studies on Microbial Community Structure and Production Performance of Jiang-Flavor Daqu in Different Areas of Maotai Town

    Get PDF
    The microbial community structure and diversity of Jiang-flavor Daqu (TS, WS, WM, MH and DJ) from different areas of Maotai town were analyzed by using the third-generation nanopore sequencing platform, and its physicochemical indexes and characteristic flavor substances were measured. The results showed that there were some similarities and differences between Daqu in different areas of Maotai town. In terms of microbial community structure, Bacillus, Saccharopolyspora, Weissella, Staphylococcus and Streptomyces were the common dominant bacterial genera in the five Daqu samples. Among them, Bacillus was the absolute dominant bacteria in MH and DJ. Aspergillus and Penicillium were the common dominant fungal genera, and the proportions of Lichtheimia and Saccharomycopsis in TS, WM and MH were significantly higher than those in DJ and WS. Compared with TS and WM, network correlation analysis showed that MH, DJ and WS had stronger interactions among dominant bacteria. In addition, redundancy analysis (RDA) showed that Weissella was positively correlated with esterification power, liquefaction power, saccharification power, acetic acid, ethyl acetate, ethyl lactate and n-pentanol. Lichtheimia was positively correlated with liquefaction power, saccharification power, acetic acid, isovaleric acid, 2,3-butanediol, phenylacetaldehyde and dibutyl phthalate. Saccharomycopsis was positively correlated with esterification power and ethyl acetate. Bacillus was positively correlated with 2,3,5,6-tetramethylpyrazine, propionic acid, isovaleric acid, dibutyl phthalate, 2,3-butanediol and phenacetaldehyde

    Towards graphane field emitters.

    Get PDF
    We report on the improved field emission performance of graphene foam (GF) following transient exposure to hydrogen plasma. The enhanced field emission mechanism associated with hydrogenation has been investigated using Fourier transform infrared spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron microscopy. The observed enhanced electron emissionhas been attributed to an increase in the areal density of lattice defects and the formation of a partially hydrogenated, graphane-like material. The treated GF emitter demonstrated a much reduced macroscopic turn-on field (2.5 V μm-1), with an increased maximum current density from 0.21 mA cm-2 (pristine) to 8.27 mA cm-2 (treated). The treated GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is further attributed to hydrogenation and the subsequent formation of a partially hydrogenated structured 2D material, which advantageously shifts the emitter work function. Alongside augmentation of the nominal crystallite size of the graphitic superstructure, surface bound species are believed to play a key role in the enhanced emission. The hydrogen plasma treatment was also noted to increase the emission spatial uniformity, with an approximate four times reduction in the per unit area variation in emission current density. Our findings suggest that plasma treatments, and particularly hydrogen and hydrogen-containing precursors, may provide an efficient, simple, and low cost means of realizing enhanced nanocarbon-based field emission devices via the engineered degradation of the nascent lattice, and adjustment of the surface work function.For assistance in ATR FTIR and EDXRF measurements we thank Dr Bob Keighley and Dr Ralph Vokes of Shimadzu Corp; and for plasma optical spectrophotometry analysis, Dr Thomas Schűtte of PLASUS GmbH. This work is supported by National Key Basic Research Program 973(2010CB327705), National Natural Science Foundation Project (51120125001, 51002031, 61101023, 51202028), Foundation of Doctoral Program of Ministry of Education (20100092110015), an EPSRC Impact Acceleration grant, and the Research Fund for International Young Scientists from NSFC (510501101 42, 51350110232). MT Cole thanks the Oppenheimer Trust for their generous financial support.This is the author accepted manuscript. The final version is available from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C5RA20771

    Towards graphane field emitters

    Get PDF
    We report on the improved field emission performance of graphene foam (GF) following transient exposure to hydrogen plasma. The enhanced field emission mechanism associated with hydrogenation has been investigated using Fourier transform infrared spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron microscopy. The observed enhanced electron emissionhas been attributed to an increase in the areal density of lattice defects and the formation of a partially hydrogenated, graphane-like material. The treated GF emitter demonstrated a much reduced macroscopic turn-on field (2.5 V ÎĽm-1), with an increased maximum current density from 0.21 mA cm-2 (pristine) to 8.27 mA cm-2 (treated). The treated GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is further attributed to hydrogenation and the subsequent formation of a partially hydrogenated structured 2D material, which advantageously shifts the emitter work function. Alongside augmentation of the nominal crystallite size of the graphitic superstructure, surface bound species are believed to play a key role in the enhanced emission. The hydrogen plasma treatment was also noted to increase the emission spatial uniformity, with an approximate four times reduction in the per unit area variation in emission current density. Our findings suggest that plasma treatments, and particularly hydrogen and hydrogen-containing precursors, may provide an efficient, simple, and low cost means of realizing enhanced nanocarbon-based field emission devices via the engineered degradation of the nascent lattice, and adjustment of the surface work function.</p
    • …
    corecore