89 research outputs found

    Acute Cocaine Differentially Induces PKA Phosphorylation Substrates in Male and Female Rats

    Full text link
    Background: Sex differences in intracellular dopamine pathways may contribute to the known sex differences in psychomotor responses to cocaine and differential development of dependence. This study aimed to determine whether there are sex differences in the activation of the extracellular signal-regulated kinases (ERK1/2, or p44/p42 MAPK) and PKA phosphorylation-dependent substrates in the nucleus accumbens (NAcc) of male and female rats at baseline or after acute cocaine administration. Methods: 60-day-old male and female Fischer rats were injected with saline or cocaine (30 mg/kg) and sacrificed 5, 15, 30, 45 or 90 minutes later. Total locomotor activity, Stereotypic, rearing, and ambulatory behaviors was measured for 90 minutes using a two-frame automated Photobeam Activity Results: Similar to our previous findings, total locomotor activities were higher in female rats after this single cocaine administration. Females had higher levels of phosphorylated PKA substrates after cocaine administration, and this change lasted longer and had a greater magnitude than in cocaine treated male rats. Furthermore, although cocaine administration increased the phosphorylation of ERK proteins, there were no sex differences in p-ERK protein levels either at baseline or after acute cocaine administration. Conclusion: Taken together, these findings suggest that sex differences in basal and cocaine-induced alterations in PKA signaling activity in the NAcc may contribute to sex differences in psychomotor responses to cocaine. However, not all the components of the DA-intracellular signaling pathway maybe heightened in female rats as ERK phosphorylation patterns did not differ between the sexes

    Mild Moxibustion Decreases the Expression of Prokineticin 2 and Prokineticin Receptor 2 in the Colon and Spinal Cord of Rats with Irritable Bowel Syndrome

    Get PDF
    It has been proven that prokineticin 2 (PK2) and its receptor PKR2 play an important role in hyperalgesia, while mild moxibustion can relieve visceral hypersensitivity in a rat model of irritable bowel syndrome (IBS). The goal of the present study was to determine the effects of mild moxibustion on the expression of PK2 and PKR2 in colon and spinal cord in IBS rat model, which was induced by colorectal distension using inflatable balloons. After mild moxibustion treatment, abdominal withdrawal reflex (AWR) scores were assessed by colorectal distension; protein and mRNA expression of PK2 and PKR2 in rat colon and spinal cord was determined by immunohistochemistry and fluorescence quantitative PCR. Compared with normal rats, the AWR scores of rats and the expressions of PK2/PKR2 proteins and mRNAs in colon and spinal cord tissue were significantly increased in the model group; compared with the model group, the AWR scores of rats and the expressions of PK2/PKR2 proteins and mRNAs in colon and spinal cord tissue were significantly decreased in the mild moxibustion group. These findings suggest that the analgesia effect of mild moxibustion may be associated with the reduction of the abnormally increased expression of the PK2/PKR2 proteins and mRNAs in the colon and spinal cord

    Electric-field Control of Magnetism with Emergent Topological Hall Effect in SrRuO3 through Proton Evolution

    Full text link
    Ionic substitution forms an essential pathway to manipulate the carrier density and crystalline symmetry of materials via ion-lattice-electron coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both carrier density and crystalline symmetry through the ionic liquid gating induced protonation. The insertion of protons electron-dopes SrRuO3, leading to an exotic ferromagnetic to paramagnetic phase transition along with the increase of proton concentration. Intriguingly, we observe an emergent topological Hall effect at the boundary of the phase transition as the consequence of the newly-established Dzyaloshinskii-Moriya interaction owing to the breaking of inversion symmetry in protonated SrRuO3 with the proton compositional film-depth gradient. We envision that electric-field controlled protonation opens a novel strategy to design material functionalities

    EGFR as a Negative Regulatory Protein Adjusts the Activity and Mobility of NHE3 in the Cell Membrane of IPEC-J2 Cells With TGEV Infection

    Get PDF
    Transmissible gastroenteritis (TGE) has caused devastating economic losses to the swine industry worldwide, despite extensive research focusing on the pathogenesis of virus infection. The molecular pathogenic mechanism of TGEV-induced diarrhea in piglets is unknown. Intestinal diarrhea is closely related to the function of the Na+/H+ exchanger protein NHE3 in the brush border membrane of small intestine epithelial cells. The epidermal growth factor receptor (EGFR) may act to regulate NHE3 expression. In addition, EGFR may promote viral invasion of host cells. The present study aimed to determine whether NHE3 activity is regulated by altering EGFR expression to affect Na+ absorption in TGEV-infected intestinal epithelial cells. Porcine intestinal epithelial cells were used as models for TGEV infection. The results showed that Na+ absorption and NHE3 expression levels decreased in TGEV-infected cells. Proliferation of TGEV within IPEC-J2 cells could be inhibited by treatment with the EGFR inhibitor AG1478 and knockdown; resulting in recovery of Na+ absorption in TGEV infected cells and increasing the activity and expression of NHE3. Moreover, we demonstrated that NHE3 activity was regulated through the EGFR/ERK pathway. Importantly, NHE3 mobility on the plasma membrane of TGEV infected cells was significantly weaker than that in normal cells, and EGFR inhibition and knockdown recovered this mobility. Our research indicated that NHE3 activity was negatively regulated by EGFR in TGEV-infected intestinal epithelial cells

    Effects of Moxibustion Stimulation on the Intensity of Infrared Radiation of Tianshu (ST25) Acupoints in Rats with Ulcerative Colitis

    Get PDF
    ST25 is a key acupoint used in the treatment of ulcerative colitis by moxibustion stimulation, but the biophysical mechanism underlying its effects is still unknown. The aim of the present study was to explore the biophysical properties of ST25 acupoint stimulated by moxibustion in a rat model of ulcerative colitis. The infrared radiation intensity of fourteen wavelengths of ST25 showed significant differences between the normal and model control groups. The intensity of infrared radiation of forty wavelengths showed significant differences compared with the corresponding control points in normal rats. The intensity of infrared radiation of twenty-eight wavelengths showed significant differences compared with the corresponding control points in model rats. The intensity of infrared radiation of nine wavelengths in the herb-partition moxibustion group, eighteen wavelengths in the ginger-partition moxibustion group, seventeen wavelengths in the garlic-partition moxibustion group, and fourteen wavelengths in the warming moxibustion group of the left ST25 showed significant differences compared with that of the model control group. For the right-hand-side ST25, these values were 33, 33, 2, and 8 wavelengths, respectively. This indicated that one possible biophysical mechanism of moxibustion on ST25 in ulcerative colitis model rats might involve changes in the intensity of infrared radiation of ST25 at different wavelengths

    YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation

    Get PDF
    Yin Yang 1 (YY1) regulates gene transcription in a variety of biological processes. In this study, we aim to determine the role of YY1 in vascular smooth muscle cell (VSMC) phenotypic modulation both in vivo and in vitro. Here we show that vascular injury in rodent carotid arteries induces YY1 expression along with reduced expression of smooth muscle differentiation markers in the carotids. Consistent with this finding, YY1 expression is induced in differentiated VSMCs in response to serum stimulation. To determine the underlying molecular mechanisms, we found that YY1 suppresses the transcription of CArG box-dependent SMC-specific genes including SM22α, SMα-actin and SMMHC. Interestingly, YY1 suppresses the transcriptional activity of the SM22α promoter by hindering the binding of serum response factor (SRF) to the proximal CArG box. YY1 also suppresses the transcription and the transactivation of myocardin (MYOCD), a master regulator for SMC-specific gene transcription by binding to SRF to form the MYOCD/SRF/CArG box triad (known as the ternary complex). Mechanistically, YY1 directly interacts with MYOCD to competitively displace MYOCD from SRF. This is the first evidence showing that YY1 inhibits SMC differentiation by directly targeting MYOCD. These findings provide new mechanistic insights into the regulatory mechanisms that govern SMC phenotypic modulation in the pathogenesis of vascular diseases

    Reversible manipulation of the magnetic state in SrRuO3 through electric-field controlled proton evolution

    Get PDF
    Ionic substitution forms an essential pathway to manipulate the structural phase, carrier density and crystalline symmetry of materials via ion-electron-lattice coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both structural and electronic phase transformations through the electric-field controlled proton evolution with ionic liquid gating. The insertion of protons results in a large structural expansion and increased carrier density, leading to an exotic ferromagnetic to paramagnetic phase transition. Importantly, we reveal a novel protonated compound of HSrRuO3 with paramagnetic metallic as ground state. We observe a topological Hall effect at the boundary of the phase transition due to the proton concentration gradient across the film-depth. We envision that electric-field controlled protonation opens up a pathway to explore novel electronic states and material functionalities in protonated material systems

    Mechanisms Underlying the Analgesic Effect of Moxibustion on Visceral Pain in Irritable Bowel Syndrome: A Review

    Get PDF
    Irritable bowel syndrome (IBS) is a functional bowel disorder that causes recurrent abdominal (visceral) pain. Epidemiological data show that the incidence rate of IBS is as high as 25%. Most of the medications may lead to tolerance, addiction and toxic side effects. Moxibustion is an important component of traditional Chinese medicine and has been used to treat IBS-like abdominal pain for several thousand years in China. As a mild treatment, moxibustion has been widely applied in clinical treatment of visceral pain in IBS. In recent years, it has played an irreplaceable role in alternative medicine. Extensive clinical studies have demonstrated that moxibustion for treatment of visceral pain is simple, convenient, and inexpensive, and it is being accepted by an increasing number of patients. There have not been many studies investigating the analgesic mechanisms of moxibustion. Studies exploring the analgesic mechanisms have mainly focused on visceral hypersensitivity, brain-gut axis neuroendocrine system, and immune system. This paper reviews the latest developments in moxibustion use for treatment of visceral pain in IBS from these perspectives. It also evaluates potential problems in relevant studies on the mechanisms of moxibustion therapy to promote the application of moxibustion in the treatment of IBS

    Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells

    Get PDF
    In response to vascular injury, vascular smooth muscle cells (VSMCs) may switch from a contractile to a proliferative phenotype thereby contributing to neointima formation. Previous studies showed that the long noncoding RNA (lncRNA) NEAT1 is critical for paraspeckle formation and tumorigenesis by promoting cell proliferation and migration. However, the role of NEAT1 in VSMC phenotypic modulation is unknown. Herein we showed that NEAT1 expression was induced in VSMCs during phenotypic switching in vivo and in vitro. Silencing NEAT1 in VSMCs resulted in enhanced expression of SM-specific genes while attenuating VSMC proliferation and migration. Conversely, overexpression of NEAT1 in VSMCs had opposite effects. These in vitro findings were further supported by in vivo studies in which NEAT1 knockout mice exhibited significantly decreased neointima formation following vascular injury, due to attenuated VSMC proliferation. Mechanistic studies demonstrated that NEAT1 sequesters the key chromatin modifier WDR5 (WD Repeat Domain 5) from SM-specific gene loci, thereby initiating an epigenetic "off" state, resulting in down-regulation of SM-specific gene expression. Taken together, we demonstrated an unexpected role of the lncRNA NEAT1 in regulating phenotypic switching by repressing SM-contractile gene expression through an epigenetic regulatory mechanism. Our data suggest that NEAT1 is a therapeutic target for treating occlusive vascular diseases

    Antifungal mechanisms of the antagonistic bacterium Bacillus mojavensis UTF-33 and its potential as a new biopesticide

    Get PDF
    Biological control has gradually become the dominant means of controlling fungal disease over recent years. In this study, an endophytic strain of UTF-33 was isolated from acid mold (Rumex acetosa L.) leaves. Based on 16S rDNA gene sequence comparison, and biochemical and physiological characteristics, this strain was formally identified as Bacillus mojavensis. Bacillus mojavensis UTF-33 was sensitive to most of the antibiotics tested except neomycin. Moreover, the filtrate fermentation solution of Bacillus mojavensis UTF-33 had a significant inhibitory effect on the growth of rice blast and was used in field evaluation tests, which reduced the infestation of rice blast effectively. Rice treated with filtrate fermentation broth exhibited multiple defense mechanisms in response, including the enhanced expression of disease process-related genes and transcription factor genes, and significantly upregulated the gene expression of titin, salicylic acid pathway-related genes, and H2O2 accumulation, in plants; this may directly or indirectly act as an antagonist to pathogenic infestation. Further analysis revealed that the n-butanol crude extract of Bacillus mojavensis UTF-33 could retard or even inhibit conidial germination and prevent the formation of adherent cells both in vitro and in vivo. In addition, the amplification of functional genes for biocontrol using specific primers showed that Bacillus mojavensis UTF-33 expresses genes that can direct the synthesis of bioA, bmyB, fenB, ituD, srfAA and other substances; this information can help us to determine the extraction direction and purification method for inhibitory substances at a later stage. In conclusion, this is the first study to identify Bacillus mojavensis as a potential agent for the control of rice diseases; this strain, and its bioactive substances, have the potential to be developed as biopesticides
    corecore