11 research outputs found

    Pharmacokinetics/pharmacodynamics of polymyxin B in patients with bloodstream infection caused by carbapenem-resistant Klebsiella pneumoniae

    Get PDF
    Introduction: Polymyxin B is a last-line therapy for carbapenem-resistant microorganisms. However, a lack of clinical pharmacokinetic/pharmacodynamic (PK/PD) data has substantially hindered dose optimization and breakpoint setting.Methods: A prospective, multi-center clinical trial was undertaken with polymyxin B [2.5 mg/kg loading dose (3-h infusion), 1.25 mg/kg/12 h maintenance dose (2-h infusion)] for treatment of carbapenem-resistant K. pneumoniae (CRKP) bloodstream infections (BSI). Safety, clinical and microbiological efficacy were evaluated. A validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to determine the concentrations of polymyxin B in blood samples. Population pharmacokinetic (PK) modeling and Monte Carlo simulations were conducted to examine the susceptibility breakpoint for polymyxin B against BSI caused by CRKP.Results: Nine patients were enrolled and evaluated for safety. Neurotoxicity (5/9), nephrotoxicity (5/9), and hyperpigmentation (1/9) were recorded. Blood cultures were negative within 3 days of commencing therapy in all 8 patients evaluated for microbiological efficacy, and clinical cure or improvement occurred in 6 of 8 patients. Cmax and Cmin following the loading dose were 5.53 ± 1.80 and 1.62 ± 0.41 mg/L, respectively. With maintenance dosing, AUCss,24 h was 79.6 ± 25.0 mg h/L and Css,avg 3.35 ± 1.06 mg/L. Monte Carlo simulations indicated that a 1 mg/kg/12-hourly maintenance dose could achieve >90% probability of target attainment (PTA) for isolates with minimum inhibitory concentration (MIC) ≤1 mg/L. PTA dropped substantially for MICs ≥2 mg/L, even with a maximally recommended daily dose of 1.5 mg/kg/12-hourly.Conclusion: This is the first clinical PK/PD study evaluating polymyxin B for BSI. These results will assist to optimize polymyxin B therapy and establish its breakpoints for CRKP BSI

    A synergistic ozone-climate control to address emerging ozone pollution challenges

    Get PDF
    Tropospheric ozone threatens human health and crop yields, exacerbates global warming, and fundamentally changes atmospheric chemistry. Evidence has pointed toward widespread ozone increases in the troposphere, and particularly surface ozone is chemically complex and difficult to abate. Despite past successes in some regions, a solution to new challenges of ozone pollution in a warming climate remains unexplored. In this perspective, by compiling surface measurements at ∼4,300 sites worldwide between 2014 and 2019, we show the emerging global challenge of ozone pollution, featuring the unintentional rise in ozone due to the uncoordinated emissions reduction and increasing climate penalty. On the basis of shared emission sources, interactive chemical mechanisms, and synergistic health effects between ozone pollution and climate warming, we propose a synergistic ozone-climate control strategy incorporating joint control of ozone and fine particulate matter. This new solution presents an opportunity to alleviate tropospheric ozone pollution in the forthcoming low-carbon transition.This study was supported by the Research Grants Council of Hong Kong Special Administrative Region via General Research Funds (HKBU 15219621 and PolyU 15212421) and a Theme-based Research Scheme (T24-504/17-N). The authors acknowledge the support of the Australia–China Centre on Air Quality Science and Management. R.S. acknowledges support from ANID/FONDAP/1522A0001. D.S. thanks the program of Coordination for the Improvement of Higher Education Personnel (CAPES) (436466/2018-0). X.X. acknowledges funding from the Natural Science Foundation of China (41330422) and the Chinese Academy of Meteorological Sciences (2020KJ003). K.L. is supported by the Natural Science Foundation of China (42205114), Jiangsu Carbon Peak and Neutrality Science and Technology Innovation fund (BK20220031), and the Startup Foundation for Introducing Talent of NUIST. We sincerely appreciate all the organizations and programs introduced in the section “experimental procedures” for freely providing ozone data. We thank Dr. Owen Cooper (University of Colorado, Boulder, and NOAA) for insightful guidance and discussion. No organization or program will be responsible for the results generated from their data.Peer reviewe

    Interaction Network of Porcine Circovirus Type 3 and 4 Capsids with Host Proteins

    No full text
    An extensive understanding of the interactions between host cellular and viral proteins provides clues for studying novel antiviral strategies. Porcine circovirus type 3 (PCV3) and type 4 (PCV4) have recently been identified as viruses that can potentially damage the swine industry. Herein, 401 putative PCV3 Cap-binding and 484 putative PCV4 Cap-binding proteins were characterized using co-immunoprecipitation and liquid chromatography-mass spectrometry. Both PCV3 and PCV4 Caps shared 278 identical interacting proteins, but some putative interacting proteins (123 for PCV3 Cap and 206 for PCV4 Cap) differed. A protein–protein interaction network was constructed, and according to gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses, both PCV3 Cap- and PCV4 Cap-binding proteins participated mainly in ribosome biogenesis, nucleic acid binding, and ATP-dependent RNA helicase activities. Verification assays of eight putative interacting proteins indicated that nucleophosmin-1, nucleolin, DEAD-box RNA helicase 21, heterogeneous nuclear ribonucleoprotein A2/B1, YTH N6-methyladenosine RNA binding protein 1, and Y-box binding protein 1 bound directly to both PCV3 and PCV4 Caps, but ring finger protein 2 and signal transducer and activator of transcription 6 did not. Therefore, the interaction network provided helpful information to support further research into the underlying mechanisms of PCV3 and PCV4 infection

    Combined PK/PD Index May Be a More Appropriate PK/PD Index for Cefoperazone/Sulbactam against <i>Acinetobacter baumannii</i> in Patients with Hospital-Acquired Pneumonia

    No full text
    Cefoperazone/sulbactam (CPZ/SUL) is a β-lactam and β-lactamase inhibitor combination therapy for the treatment of respiratory tract infections. Using data from a prospective, multiple-center, open-label clinical trial in 54 patients with hospital-acquired pneumonia or ventilator-associated pneumonia caused by multidrug-resistant Acinetobacter baumannii (Ab), we showed that a combined PK/PD index %(T > MICcpz*T > MICsul) is a more appropriate PK/PD index against Ab, compared to the PK/PD index (%T > MIC) for a single drug. For a 2 h infusion, the PK/PD cutoff of CPZ/SUL (2 g/1 g, q8h) for clinical and microbiological efficacy was 4/2 and 1/0.5 mg/L, respectively. The corresponding cumulative fraction of response was 46.5% and 25.3%, respectively. Results based on the combined PK/PD index were quite similar to that based on the joint probability of target attainment. The two drugs have interaction from the viewpoint of PK/PD. When the dose of one drug was too high, the PK/PD cutoff was often determined by another drug in which the dose was maintained. In most cases, sulbactam exerted the main effect against infection by Ab in the complex CPZ/SUL, which was similar to the literature reports. When the MIC of CPZ was 8, 16, or 32 mg/L, a CPZ/SUL 2 g/1 g (q8h), 2 g/2 g (q8h), or 2 g/2 g (q6h) (infusion was all 3 h) was recommended, respectively. A clinical efficacy and safety study to confirm simulation results is warranted

    Synergistic effect of vermiculite and submerged plants on lake sediments

    No full text
    The synergistic effect of vermiculite and the submerged macrophytes Vallisneria spiralis and Hydrilla verticillata on lake sediment was studied using diffusive gradients in thin films (DGT) technology. The dynamics of phosphorus (P) fractions in sediment, the labile-P and labile-S in the water-sediment continuum, and the microbial community in the rhizosphere were studied. Vermiculite effectively promoted reproduction of microorganisms in the sediments Microbial abundance in treatments containing V. spiralis with sediments containing 10% added vermiculite, and H. verticillata containing 50% added vermiculite being 1.7 and 3.5 times higher than the controls which contained no added vermiculite. Acidobacteria and Proteobacteria populations, which are both beneficial for the sediment microenvironment, were higher in treatment groups containing vermiculite. The bioavailable-P in treatment groups containing added vermiculite was lower at the sediment-water interface, with a correlating decrease of TP by between 63% and 91% in the overlying water. This suggests that vermiculite can affect the release of labile P and facilitate the assimilation of nutrients by macrophyte roots. Additionally, vermiculite can improve the Oxidation-Reduction potential and further reduce sulfide toxicity to plants. These results provide theoretical guidance and technical support for the application of vermiculite combined with submerged plants for the remediation of eutrophic lakes

    Does Ozone Pollution Share the Same Formation Mechanisms in the Bay Areas of China?

    No full text
    As important regions of transition between land and sea, the three bay areas of Bohai Bay (BHB), Hangzhou Bay (HZB), and Pearl River Estuary (PRE) in China often suffer from severe photochemical pollution despite scarce anthropogenic emissions. To understand the causes of high ozone (O3) concentrations, the high O3 episode days associated with special synoptic systems in the three bays were identified via observations and simulated by the weather research and forecasting coupled with community multiscale air quality (WRF-CMAQ) model. It was revealed that the interaction between synoptic winds and mesoscale breezes resulted in slow wind speeds over the HZB and PRE, where air pollutants transported from upwind cities gained a long residence time and subsequently participated in intensive photochemical reactions. The net O3 production rates within the bay areas were even comparable to those in surrounding cities. This finding was also applicable to BHB but with lower net O3 production rates, while high levels of background O3 and the regional transport from farther upwind BHB partially elevated the O3 concentrations. Hence, these three bay areas served as O3 “pools” which caused the accumulation of air pollutants via atmospheric dynamics and subsequent intense photochemical reactions under certain meteorological conditions. The results may be applicable to other similar ecotones around the world

    A synergistic ozone-climate control to address emerging ozone pollution challenges

    No full text
    Tropospheric ozone threatens human health and crop yields, exacerbates global warming, and fundamentally changes atmospheric chemistry. Evidence has pointed toward widespread ozone increases in the troposphere, and particularly surface ozone is chemically complex and difficult to abate. Despite past successes in some regions, a solution to new challenges of ozone pollution in a warming climate remains unexplored. In this perspective, by compiling surface measurements at ∼4,300 sites worldwide between 2014 and 2019, we show the emerging global challenge of ozone pollution, featuring the unintentional rise in ozone due to the uncoordinated emissions reduction and increasing climate penalty. On the basis of shared emission sources, interactive chemical mechanisms, and synergistic health effects between ozone pollution and climate warming, we propose a synergistic ozone-climate control strategy incorporating joint control of ozone and fine particulate matter. This new solution presents an opportunity to alleviate tropospheric ozone pollution in the forthcoming low-carbon transition.</p
    corecore