256 research outputs found

    Therblig-embedded value stream mapping method for lean energy machining

    Get PDF
    To improve energy efficiency, extensive studies have focused on the cutting parameters optimization in the machining process. Actually, non-cutting activities (NCA) occur frequently during machining and this is a promising way to save energy through optimizing NCA without changing the cutting parameters. However, it is difficult for the existing methods to accurately determine and reduce the energy wastes (EW) in NCA. To fill this gap, a novel Therblig-embedded Value Stream Mapping (TVSM) method is proposed to improve the energy transparency and clearly show and reduce the EW in NCA. The Future-State-Map (FSM) of TVSM can be built by minimizing non-cutting activities and Therbligs. By implementing the FSM, time and energy efficiencies can be improved without decreasing the machining quality, which is consistent with the goal of lean energy machining. The method is validated by a machining case study, the results show that the total energy is reduced by 7.65%, and the time efficiency of the value-added activities is improved by 8.12% , and the energy efficiency of value-added activities and Therbligs are raised by 4.95% and 1.58%, respectively. This approach can be applied to reduce the EW of NCA, to support designers to design high energy efficiency machining processes during process planning

    Applications of Schauder’s Fixed Point Theorem to Semipositone Singular Differential Equations

    Get PDF
    We study the existence of positive periodic solutions of second-order singular differential equations. The proof relies on Schauder’s fixed point theorem. Our results generalized and extended those results contained in the studies by Chu and Torres (2007) and Torres (2007) . In some suitable weak singularities, the existence of periodic solutions may help

    Assessment of the economic impacts of heat waves: A case study of Nanjing, China

    Get PDF
    The southeast region of China is frequently affected by summer heat waves. Nanjing, a metropolitan city in Jiangsu Province, China, experienced an extreme 14-day heat wave in 2013. Extreme heat can not only induce health outcomes in terms of excess mortality and morbidity (hospital admissions) but can also cause productivity losses for self-paced indoor workers and capacity losses for outdoor workers due to occupational safety requirements. All of these effects can be translated into productive working time losses, thus creating a need to investigate the macroeconomic implications of heat waves on production supply chains. Indeed, industrial interdependencies are important for capturing the cascading effects of initial changes in factor inputs in a single sector on the remaining sectors and the economy. To consider these effects, this paper develops an interdisciplinary approach by combining meteorological, epidemiological and economic analyses to investigate the macroeconomic impacts of heat waves on the economy of Nanjing in 2013. By adopting a supply-driven input-output (IO) model, labour is perceived to be a key factor input, and any heat effect on human beings can be viewed as a degradation of productive time and human capital. Using this interdisciplinary tool, our study shows a total economic loss of 27.49 billion Yuan for Nanjing in 2013 due to the heat wave, which is equivalent to 3.43% of the city's gross value of production in 2013. The manufacturing sector sustained 63.1% of the total economic loss at 17.34 billion Yuan. Indeed, based on the ability of the IO model to capture indirect economic loss, our results further suggest that although the productive time losses in the manufacturing and service sectors have lower magnitudes than those in the agricultural and mining sectors, they can entail substantial indirect losses because of industrial interdependencies. This important conclusion highlights the importance of incorporating industrial interdependencies and indirect economic assessments in disaster risk studies

    Large Variation of Mercury Isotope Composition During a Single Precipitation Event at Lhasa City, Tibetan Plateau, China

    Get PDF
    AbstractThis study examined for the first time the Hg isotope composition in rain samples from a single precipitation event at Lhasa City (China) on the Tibetan Plateau, the “world's third pole”. Large variations of both mass-dependent fractionation (MDF, δ202Hg from -0.80‰ to -0.42‰) and mass-independent fractionation (MIF, Δ199Hg from 0.38‰ to 0.76‰) were observed, with the latter increasing with time. Our results demonstrated that the large variation of Hg isotope ratios likely resulted from mixing of locally emitted Hg and long-term transported Hg, which were characterized by different Hg isotope signatures and mainly leached by below-cloud scavenging and in-cloud scavenging processes, respectively. Our findings demonstrated that Hg isotopes are a powerful tool for investigating the dynamics of precipitation events and emphasized the importance of systematic monitoring studies of the chemical and isotope variability of Hg and other elements during rainfall events

    Empirical verification of heterogeneous DNA fragments generated from wheat genome-specific SSR primers

    Get PDF
    Publisher's version/PDFDue to the high polymorphisms between synthetic hexaploid wheat (SHW) and common wheat, SHW has been widely used in genetic studies. The transferability of simple sequence repeats (SSR) among common wheat and its donor species, Triticum turgidum and Aegilops tauschii, and their SHW suggested the possibility that some SSRs, specific for a single locus in common wheat, might appear in two or more loci in SHWs. This is an important genetic issue when using synthetic hexaploid wheat population and SSR for mapping. However, it is largely ignored and never empirically well verified. The present study addressed this issue by using the well-studied SSR marker Xgwm261 as an example. The Xgwm261 produced a 192 bp fragment specific to chromosome 2D in common wheat Chinese Spring, but generated a 176 bp fragment in the D genome of Ae. tauschii AS60. Chromosomal location and DNA sequence data revealed that the 176 bp fragment also donated by 2B chromosome of durum wheat Langdon. These results indicated that although a single 176 bp fragment was appeared in synthetic hexaploid wheat Syn-SAU-5 between Langdon and AS60, the fragment contained two different loci, one from chromosome 2D of AS60 and the other from 2B of Langdon which were confirmed by the segregating analysis of SSR Xgwm261 in 185 plants from a F2 population between Syn-SAU-5 and Chinese Spring. If Xgwm261 in Syn-SAU-5 was considered as a single locus in genetic analysis, distorted segregation or incorrect conclusions would be yielded. A proposed strategy to avoid this problem is to include SHW’s parental T. turgidum and Ae. tauschii in SSR analysis as control for polymorphism detection

    HAP: Structure-Aware Masked Image Modeling for Human-Centric Perception

    Full text link
    Model pre-training is essential in human-centric perception. In this paper, we first introduce masked image modeling (MIM) as a pre-training approach for this task. Upon revisiting the MIM training strategy, we reveal that human structure priors offer significant potential. Motivated by this insight, we further incorporate an intuitive human structure prior - human parts - into pre-training. Specifically, we employ this prior to guide the mask sampling process. Image patches, corresponding to human part regions, have high priority to be masked out. This encourages the model to concentrate more on body structure information during pre-training, yielding substantial benefits across a range of human-centric perception tasks. To further capture human characteristics, we propose a structure-invariant alignment loss that enforces different masked views, guided by the human part prior, to be closely aligned for the same image. We term the entire method as HAP. HAP simply uses a plain ViT as the encoder yet establishes new state-of-the-art performance on 11 human-centric benchmarks, and on-par result on one dataset. For example, HAP achieves 78.1% mAP on MSMT17 for person re-identification, 86.54% mA on PA-100K for pedestrian attribute recognition, 78.2% AP on MS COCO for 2D pose estimation, and 56.0 PA-MPJPE on 3DPW for 3D pose and shape estimation.Comment: Accepted by NeurIPS 202

    Introgression of Powdery Mildew Resistance Gene Pm56 on Rye Chromosome Arm 6RS Into Wheat

    Get PDF
    Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici, represents a yield constraint in many parts of the world. Here, the introduction of a resistance gene carried by the cereal rye cv. Qinling chromosome 6R was transferred into wheat in the form of spontaneous balanced translocation induced in plants doubly monosomic for chromosomes 6R and 6A. The translocation, along with other structural variants, was detected using in situ hybridization and genetic markers. The differential disease response of plants harboring various fragments of 6R indicated that a powdery mildew resistance gene(s) was present on both arms of rye chromosome 6R. Based on karyotyping, the short arm gene, designated Pm56, was mapped to the subtelomere region of the arm. The Robertsonian translocation 6ALâ‹…6RS can be exploited by wheat breeders as a novel resistance resource
    • …
    corecore