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Abstract: To improve energy efficiency, extensive studies have focused on the cutting parameters 9 

optimization in the machining process. Actually, non-cutting activities (NCA) occur frequently during 10 

machining and this is a promising way to save energy through optimizing NCA without changing the 11 

cutting parameters. However, it is difficult for the existing methods to accurately determine and reduce the 12 

energy wastes (EW) in NCA. To fill this gap, a novel Therblig-embedded Value Stream Mapping (TVSM) 13 

method is proposed to improve the energy transparency and clearly show and reduce the EW in NCA. The 14 

Future-State-Map (FSM) of TVSM can be built by minimizing non-cutting activities and Therbligs. By 15 

implementing the FSM, time and energy efficiencies can be improved without decreasing the machining 16 

quality, which is consistent with the goal of lean energy machining. The method is validated by a 17 

machining case study, the results show that the total energy is reduced by 7.65%, and the time efficiency of 18 

the value-added activities is improved by 8.12% , and the energy efficiency of value-added activities and 19 

Therbligs are raised by 4.95% and 1.58%, respectively. This approach can be applied to reduce the EW of 20 

NCA, to support designers to design high energy efficiency machining processes during process planning. 21 

JEL-codes: Q47 Energy Forecasting; Q49 Other 22 

Key words: energy efficiency; lean energy machining; value-added; non-valued added; Therblig-embedded 23 

value stream mapping.24 

1. Introduction 25 

Nowadays, rising energy prices and increasing environmental awareness are driving manufacturing companies 26 

to prioritize green manufacturing [1]. Besides classical economical production objectives (e.g., time, quality, and 27 

cost), environmentally driven objectives, such as high energy efficiency, low carbon emissions, etc., have become 28 
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increasingly relevant for the manufacturing industry [2-4]. Producing more products or services with less material, 1 

energy, etc., is becoming a new challenge faced by manufacturing companies, which are trying to find new ways to 2 

reduce energy consumption to minimize costs and environmental impact [5,6]. Driven by the development of 3 

technology, machine tools are increasingly integrated, efficient and intelligent, leading to growing energy 4 

consumption. The report of the Energy Information Administration (EIA) shows that machining electricity 5 

consumed in manufacturing accounted for 90% of the electricity consumption in the industry and 75% of electricity 6 

consumption in manufacturing as a whole [7]. An interesting study conducted by Gutowski showed that CO2 7 

emissions of one computer numerical control (CNC) machine tool (22 kW spindle power) in one year is equivalent 8 

to that of 61 SUVs’ CO2 emissions (20.7 mpg, 12000 miles/year) [8]. China owns about eight million machine tools, 9 

which ranks them number one in the world [9]. As shown in Fig. 1, if one machine tool can process 1000 parts/day 10 

and 0.01kWh can be saved machining one part, then the total potential energy savings could be more than 20 11 

TWh/year, which is about 24% of the Three Gorges Power Station's actual annual generation capacity [10]. On a 12 

larger scale, the potential energy savings represents 0.66% of the total electricity consumption of the manufacturing 13 

industry in China [11]. Although the proportion is not very large due to the size of the industry, the total energy 14 

savings potential is still considerable. 15 

 16 

Fig. 1. Total energy saving potential of machine tools in China. 17 

It is clear that the machining process has become one of the major sources of energy consumption and 18 

environmental impacts of the manufacturing industry. Unfortunately, machining, as a manufacturing process to 19 

remove extra material, is wasteful in its use of energy and very inefficient [12-16]. The energy used for the direct 20 

removal material is generally less than 30% of the total energy consumed by a machine tool [17-19]. Therefore, the 21 



 

3 

energy-saving potential in the machining process is enormous.  1 

The study of energy modeling and energy efficiency improvement of the machining process has aroused 2 

extensive interest in recent years[20-25]. To achieve better energy management of the machining process, energy 3 

consumption allowance, as a significant management tool for improving energy efficiency, was introduced into the 4 

mechanical manufacturing industry [26]. Moreover, many studies have focused on optimizing the cutting 5 

parameters in the machining process [27-38]. It is necessary to point out that apart from cutting activities, 6 

non-cutting activities (NCA) occur frequently during machining [39] and the energy demand of NCA is  7 

significant, sometimes using more than 70% of the total energy consumption in machining [40]. Therefore, this is a 8 

promising way to achieve energy saving and lean energy machining  through optimizing NCA without changing 9 

the material cutting parameters. Lean energy machining is defined as machining more material with less energy 10 

without lowering the machining quality. 11 

In this paper, machining process refers to conventional machining processes, i.e., turning, milling, etc. The 12 

machining process can be defined as the process of removing material from a workpiece in the form of chips 13 

[41].The main aim of the machining process is removing material to obtain a designed shape of a workpiece. As 14 

shown in Fig. 2, the machining process can be divided into two types of activity: value-added activity (VAA) and 15 

non-value added activity (NVAA). The VAA is defined as the activity which directly removes material, while the 16 

activity that does not create value and does not directly remove material, can be defined as NVAA (e.g., standby 17 

operating, rapid positioning, etc). A significant amount of energy is consumed by the non-cutting activities which 18 

are considered NVAA. Energy consumption for the actual cutting process (VAA) is generally less than 30% of the 19 

total energy consumption of machine tools [42,43]. For only some modern milling machine tools, this proportion 20 

can reach up to 65.8% [44]. Hence, there is great potential for improving the energy efficiency of the machining 21 

process through energy-saving in NVAAs. The energy optimization of material cutting activities has drawn much 22 

attention from researchers [27-38]. However, it is difficult for the existing methods to accurately determine and 23 

reduce the energy wastes in NVAA. To bridge this gap, a Therblig-embedded Value Stream Mapping (TVSM) 24 

method for lean energy machining is proposed in this paper. This method can improve the transparency of energy 25 

demand in the machining process and identify potential energy saving opportunities in NVAA. The advantages of 26 

this method are: 1) the machining quality is not affected as the cutting parameters are not unchanged; 2) energy 27 

savings can be achieved without shortening the service life of the cutting tool; 3) the energy demand of NVAA 28 

occupies a large proportion of the total energy of the machining process and the energy saving potential is 29 
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significant ; 4) the approach can support the designers to help them design a high energy efficiency machining 1 

process. 2 

 3 

Fig. 2. Classification of machining activities and corresponding energy saving characteristics. 4 

2. Literature review 5 

 Substantial research has been conducted on energy saving issues in the machining process. Most studies have 6 

primarily focused on energy consumption monitoring [45-48], energy consumption and carbon emission modeling 7 

[49-55], and simulations for saving energy [56-59]. In addition, improving the machine tool itself has been 8 

identified as an effective way to save energy. For instance, lightweight design [60], multi-spindle systems [61], and 9 

kinetic energy recovery systems [62] are common energy-saving designs. The experiments also showed that 10 

significant energy savings can be achieved with these designs. However, this method only applies to the design 11 

stage. Once in use, applying these designs to a machining tool is extremely difficult due to time constraints and the 12 

high cost. Therefore, optimization of scheduling and optimization of cutting parameters are more practical 13 

measures for energy savings once the machine tool is operating. 14 

When optimizing scheduling, energy consumption is usually not considered in the traditional scheduling 15 

issues. Recently, some references focused on the scheduling problem with considering energy factor [63]. Fang 16 

presented a mathematical programming model of the flow shop scheduling problem that considers peak power load, 17 

energy consumption and associated carbon footprint in addition to cycle time [64]. An energy-aware scheduling 18 

model of manufacturing processes was proposed by Bruzzone [65]. Shrouf proposed a mathematical model to 19 

minimize energy costs for single machine production scheduling [66]. Liu developed a multi-objective scheduling 20 
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method with reducing energy consumption as one of the objectives [67]. Due to the computational complexity of 1 

scheduling problem itself, the power models in the above researches are generally simplified models. The power 2 

profile obtained based on the simplified power models is often not consistent with the actual power profile.  3 

For the optimization of cutting parameters, Aggarwal investigated the effects of cutting parameters on power 4 

consumption by using the response surface methodology (RSM) and Taguchi's technique [68]. Results showed that 5 

cutting environment is the most significant factor followed by cutting speed and depth of cut. Campatelli provided 6 

an experimental approach to optimize the process parameters in order to minimize the power consumption in a 7 

milling process [69]. It was showed that energy saving can be achieved if the maximum allowable value of feed 8 

and depth of cut are selected [70]. The reason this occurs is mainly because the cutting tool life and machining 9 

quality were not taken into account. Achieving greater energy efficiency with this method may result in the 10 

worsening of other factors such as quality [6]. Bhushan pointed out that it is important to minimize power 11 

consumption and maximize tool life during machining [71]. Therefore, the cutting parameters such as cutting speed, 12 

feed rate, depth of cut and nose radius are optimized by multi-response considerations namely power consumption 13 

and tool life. It is necessary to note that changing cutting parameters will affect the machining quality. Therefore, 14 

the optimization of the cutting parameters is a multi-objective optimization problem, surface roughness should be 15 

taken into account [72]. An experimental study was carried out to ensure that the energy consumption and surface 16 

roughness were minimized, while the material removal rate was maximized [73]. Most research about the 17 

optimization of cutting parameters has mainly focused on the material cutting state or treated the power consumed 18 

as the unloaded power to simplify the optimization problem [72]. Actually, energy consumption at the material 19 

cutting stage is not the main part of the total energy consumed, while NCA accounts for the majority of the energy 20 

consumed in the machining processes at more than 70% of the total [43,40]. Therefore, improvement opportunities 21 

exist in the NCA portion of the machining process. 22 

As mentioned above, substantial energy is consumed by NVAA during the machining process. There is limited  23 

research on eliminating or reducing the energy of NVAA by using value stream analysis. In our previous work, we 24 

indicated that Therblig-embedded value stream mapping can be applied for energy saving in the machining process 25 

[74]. Some researchers tried to combine sustainable metrics with value stream mapping (VSM) and a 26 

Sustainable-VSM tool was proposed, which includes metrics to evaluate the environmental and societal 27 

performance of a manufacturing line [75]. Three case studies were conducted to demonstrate the applicability of the 28 

Sustainable-VSM tool [76]. Similarly, an economic and environmental value stream map (E2VSM) method was 29 
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proposed for modeling multi-product manufacturing systems with dynamic material, energy and information flows, 1 

and the proposed methodology was validated with an industrial case study [77]. Another relevant study was 2 

conducted by Mustafaraj [78]. They developed a method for determining auxiliary and value-added electricity in 3 

manufacturing operations. The sampling rate of date collection was set to 15 minutes. Due to the large sampling 4 

rate and batch production mode, the approach did not provide deep insight into the energy consumption of each 5 

machining activity for each product and some energy efficiency improvement opportunities may have been missed. 6 

To fill this gap, a TVSM method is proposed in this paper. This method can provide further insight into energy 7 

usage in the machining process, identify the value-added and non-value-added activities, and further distinguish 8 

value-added and non-value-added Therbligs in activities. Consequently, this method can help to determine the 9 

sources of energy wastage (non-value-added activities and Therbligs) and eliminate them by implementing a future 10 

state value stream, without changing material cutting parameters. Hence, energy savings in a machining process 11 

can be achieved without lowering the machining quality, which is exactly the aim of lean energy machining. 12 

3. Therblig-embedded value stream mapping method 13 

Lean manufacturing focuses on eliminating waste, simplifying procedures and speeding up production [79]. 14 

The key principles of lean are continuously and relentlessly improving the value, value stream, flow, and pull in 15 

business operations [80]. In this paper, a TVSM method is proposed to realize lean energy machining.  16 

The framework of the proposed method is shown in Fig. 3. The approach can be divided into two main parts: 17 

machining process analysis and value stream analysis. More specifically, machining activities are identified 18 

according to the NC program and then each activity is further decomposed into Therbligs, which is the basic energy 19 

demand unit, based on mapping the relationship between activities and Therbligs. Based on the machining process 20 

analysis, the current-state-map (CSM) of TVSM can be established, with which energy wastes are easily to be 21 

identified. Therefore, the energy wastes can be reduced or eliminated by implementing a Future-state-map (FSM).  22 
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 1 

Fig. 3. Framework of the proposed methodology. 2 

3.1. Value stream mapping  3 

Value Stream Mapping (VSM) has emerged as the preferred way to implement lean in recent years. VSM is an 4 

extremely powerful tool used to describe the configuration of value streams [80,81]. It not only maps material 5 

flows but also information flows that signal and control these material flows [82]. It can help us to see and to 6 

understand the flow of material and information as a product makes its way through the value stream [83]. 7 

Components of traditional VSM is shown in Fig. 4 [80,83].  8 

 9 

 10 

 11 

 12 

 13 

 14 

Fig. 4. Components of a traditional value stream map [80]. 15 

3.2. Lean energy machining based on Therblig-embedded value stream analysis  16 

    The TVSM approach can be demonstrated through seven subparts, as shown in Fig. 5. The specific content of 17 

each subpart is shown in the following parts of this section. 18 
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 1 

Fig. 5. Procedure of the Therblig-embedded value stream mapping. 2 

3.2.1. Basic information about the TVSM  3 

VSM can help us visualize the value flow and see the waste as well as the sources of waste in value stream. 4 

Once "value" has been defined, lean production development requires the analysis of the ‘value stream’, with all 5 

activities-both value-added and non-value-added [84]. Machining activities can be further decomposed into basic 6 

Therbligs of machine tools [85,74]. From the point of view of lean energy, Therbligs of machine tools can also be 7 

divided into two types: value-added Therbligs and non-value-added Therbligs. As mentioned previously, the main 8 

aim of machining process is to remove material and shape the workpiece. Therefore, only Therbligs directly 9 

removing material create value, which are defined as value-added Therbligs (VATs). Therbligs that do not create 10 

value (not directly removing material) are defined as non-value-added Therbligs (NVATs). Notably, not all NVATs 11 

are sources of energy wastes and require elimination. Actually, the NVATs can be classified into two types: 12 

Necessary NVAT (N-NVAT) and Unnecessary NVAT (U-NVAT). N-NVAT denotes Therbligs that do not create 13 

value but are necessary for the machining process; U-NVAT denotes Therbligs that do not create value and are 14 

therefore not required. A TVSM method is proposed by combining Therbligs with traditional VSM. VSM provides 15 

a set of standard components as a common language for describing manufacturing processes[80]. To conduct 16 

energy analysis, TVSM further extends these components and the main components of the TVSM are shown in Fig. 17 

6. 18 

 19 

Fig. 6. Main components of Therblig-embedded value stream map. 20 
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3.2.2. Extracting information for establishing the TVSM 1 

Machining activities are composed of Therbligs, and when the Therbligs in an activity contains value-added 2 

Therbligs, the activity is considered a value-added activity (VAA). The VAA can also contains non-value-added 3 

Therbligs and those NVATs can be reduced or eliminated. When all the Therbligs in an activity are non-value-added 4 

Therbligs, the activity is a non-value-added activity (NVAA). Similarly, the NVAAs can be classified into two types: 5 

Necessary NVAA (N-NVAA) and Unnecessary NVAA(U-NVAA). If some Therbligs in an activity can be 6 

eliminated or reduced in terms of duration and power, the corresponding activity cannot be eliminated but can be 7 

optimized, which is called N-NVAA. If all the Therbligs in an activity can be eliminated, then the corresponding 8 

activity can be eliminated, which is called an U-NVAA. 9 

TVSM can be used to determine value-added Therbligs and activities and non-value-added Therbligs and 10 

activities, and highlight the sources of energy waste (U-NVAT and U-NVAA). Value stream analysis can be 11 

conducted to eliminate or optimize the waste activities or Therbligs and increase the proportion of VAT and VAA 12 

during a machining process. Consequently, the energy efficiency of a machining process can be improved.. 13 

 14 

Fig. 7. Composition of machining processes. 15 

Machining processes can be decomposed into a series of activities and each activity is composed of one or 16 

more basic Therbligs (see Fig.7). The activity extraction method and mapping relationship between activities and 17 

Therbligs have been researched in our previous work [85,86]. The activities of an actual machining process, 18 

duration, and corresponding Therbligs of each activity can be obtained. Supposing n activities are decomposed 19 

from one machining process, the duration and corresponding Therbligs of each activity can be listed in a table, as 20 

shown in Table 1.  21 

 22 

Activity 1 Activity 2 Activity 3 Activity n

Therblig 1

Therblig 2

Therblig 3

Machining processes 

Therblig 1

Therblig 2

Therblig 1

Therblig 2

Therblig 3

Therblig 4

Therblig 5

Therblig 1

Therblig 2

Therblig 3

Therblig 4

…

…

Blank Workpiece



 

10 

 1 

 2 

 3 

 4 

 5 

3.2.3. Establishing the CSM of TVSM 6 

According to the information in Table 1, TVSM can be established with the components depicted in Fig. 8. 7 

The establishment steps of TVSM are listed as follows. 8 

Step one: Establish the activity chain 9 

Activity chain can be established according to the extracted activities and sequence of activities in Table 1. 10 

Activities in the activity chain are connected by information flow, electronic and manual, as shown in Fig. 8a. For 11 

CNC machine tools, the machining activities are controlled by computer, and information flow between two 12 

activities is therefore electronic information flow.  13 

Step two: Embed Therbligs into activity 14 

Based on the established activity chain and the relationship between activities and Therbligs, Therbligs are 15 

embedded into each activity in a value stream map, as shown in Fig. 8b. To clearly distinguish value-added 16 

Therblig from non-value-added Therbligs, the value-added Therblig (Therblig-MC ) is described in red, while 17 

non-value-added Therbligs (Therblig-SO ; -L ; -CFS ; -CC ; -SR ; -XF ; -YF ; -ZF ; 18 

-AR ; -BR ; -CR ; -TS ; -TC  ) are described in blue. The activity which contains value-added 19 

Therblig is a VAA. 20 

Step three: Add a data box 21 

Corresponding data box is added under each activity, in which cycle time (C/T) and changeover time (C/O) of 22 

activity are listed, as shown in Fig. 8b. C/T denotes the duration of each activity and C/O denotes the preparation 23 

time for each activity.  24 

Step four: Draw timeline 25 

After adding the data box, a timeline is drawn under each data box according to the C/T and type of activity. 26 

To be specific, when the activity is a VAA, the timeline is drawn in red; otherwise, the timeline is drawn in blue, as 27 

C
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shown in Fig. 8c. Moreover, the C/T value for the corresponding activity is labeled on the timeline. 1 

Step five: Fill in the timeline summary 2 

According to the timeline of each activity, the Total Machining time (TM) and Value-Added time (VA) are 3 

calculated and filled in the timeline summary, as shown in Fig. 8c. VA is the sum of the duration of each of the 4 

value-added activities in the activity chain. TM is the sum of each duration of every activity in the activity chain, 5 

including value-added and non-value-added activities. 6 

 7 

Fig. 8. Establishing procedure of a TVSM of machining process. 8 

Taking activity n-2 as an example, the corresponding Therbligs of activity n-2 are Therblig-SO , -L , 9 

-SR , -XF  and -MC . Therefore, Therblig-SO , -L , -SR , -XF  and -MC  are 10 

embedded into activity n-2. The value-added Therblig (-MC ) is described in red, while other non-value-added 11 

Therbligs are described in blue. As this activity contains value-added Therblig (-MC ), the activity n-2 is 12 

therefore a typical VAA. According to Table 1, the C/T of activity n-2 is 4.75 s, which is filled into the 13 

corresponding data box. Due to the coherence of activities when the machining process is started, the C/O of 14 

activity n-2 is therefore 0 s. In addition, the timeline of is drawn under the data box of activity n-2. The timeline of 15 

activity n-2 is drawn in red since this activity is a VAA, as mentioned above. Then, the C/T value (4.75 s) of 16 

activity n-2 is labeled on the timeline. The components and information of the other activities can be established 17 

following the same approach. The TM and VA can be calculated and entered into the timeline summary according 18 

to the timeline of each activity. Finally, the TVSM of the entire machining process is established. Because the 19 

activities and corresponding Therbligs in Table 1 were extracted from the actual machining process, the established 20 
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TVSM is considered a Current-State-Map (CSM). 1 

3.2.4. Analysis of the time and energy efficiency of the CSM  2 

    A typical CSM of TVSM is shown in Fig. 8. The CSM can highlight the sources of energy waste in Therbligs 3 

and activities and help us find the energy saving opportunities. Based on the CSM and the established power 4 

models of Therbligs [74,85,86], three types of efficiencies can be calculated to evaluate time and energy consumed 5 

throughout the value stream, including the time efficiency of value-added activity VA , the energy efficiency of 6 

value-added activity VAA  and the energy efficiency of value-added Therblig VAT . 7 

    Equation (1) calculates the time efficiency of value-added activity VA , which is defined as the ratio of the 8 

value-added activity time and total machining time, which is expressed as: 9 

 10 

where, VA  is the value-added activity time during the machining process, s; TM is the total time of machining 11 

process, s; VAAit  is the duration of ith value-added activity, s; VAAN  is the number of value-added activities; Ajt is 12 

the duration of the jth activity, s; AN  is the total number of activities (including value-added and non-value 13 

added). 14 

    Equation (2) calculates the energy efficiency of value added activity VAA , which is defined as the ratio of the 15 

value-added activity's energy and the total machining energy, which is calculated as: 16 

 17 

 18 

where, VAAE  is the energy demand of the value-added activities, J; TME is the total energy demand of the 19 

machining process, J; VAAie  is the energy demand of the ith value-added activity, J; Aje is the energy demand of 20 

the jth activity, J. 21 

    Equation (3) is the energy efficiency of value-added Therblig VAT ,which is defined as the ratio of 22 

value-added Therblig energy and the total machining energy, which is computed as: 23 

 24 

 25 
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where, VATE  is the energy demand of value-added Therblig, J; TME is the total energy demand of the machining 1 

process, J; VATie  is the energy demand of the ith value-added Therblig, J. 2 

3.2.5. Establishing the FSM of TVSM 3 

    The evaluations of VA , VAA , and VAT  of a CSM can show the level of time and energy efficiency and 4 

reveal the energy-saving potential in the machining process. These three efficiencies provide objective evaluation 5 

indicators for the energy performance of a machining process. It is necessary to note that the point of getting lean is 6 

not “mapping”, which is just a technique. The important goal is implementing a value-adding flow. To create this 7 

flow we need a "vision" of the flow. Mapping helps us see and focus on flow with a vision of an ideal, or at least 8 

improved, state [82]. TVSM is aimed to highlight the sources of energy waste and eliminate them by implementing 9 

a future state value stream. The future state value stream is illustrated in the form of a Future-State-Map (FSM), as 10 

shown in Fig. 9. 11 

 12 

Fig. 9. Therblig-embedded value stream mapping (Future-State-Map). 13 
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and are unnecessary, which is typical waste and should be eliminated. Some Therbligs (e.g., -SO , -CFS ,  18 

etc.) may be N-NVAT in one activity while U-NVAT in another activity. Hence, the N-NVATs and U-NVATs need 19 
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optimized at the activity level. With the help of the CSM of Therblig-embedded VSM, the sources of energy wastes 21 
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are easily identified. Consequently, the FSM can be built via eliminating the energy wastes (see Fig. 9), by 1 

removing the U-NVATs and reducing the time and power of N-NVATs, etc.  2 

3.2.6. Comparison between FSM and CSM 3 

    Based on the established FSM and CSM, the time and energy comparison between FSM and CSM can be 4 

performed. Taking one specific activity as an example (see Fig. 10), the duration of an activity in the CSM can be 5 

obtained according to the activity extraction results in Table 1. Supposing the obtained duration is t1, then duration 6 

of each Therblig in this activity is also t1. In addition, the power of each Therblig in this activity can be calculated 7 

based on the power models of Therbligs. Consequently, the energy demand of each Therblig in this activity can be 8 

learned. Similarly, the duration and energy demand of each Therblig of this activity in the FSM can also be gained. 9 

As a result, the savings of duration and energy of each Therblig can be obtained, as shown in Fig. 10.  10 

 11 

Fig. 10. Comparison between FSM and CSM. 12 

    Once the duration and energy demand of each Therblig in the activity have been obtained, the duration and 13 

energy demand of each activity can be easily be determined. Then the total duration and total energy demand of the 14 

machining process can be obtained by summing up the duration and energy demand of each activity.  15 
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Consequently, the time efficiency of value-added activity ( VA ), the energy efficiency of value-added activity( VAA ) 1 

and the energy efficiency of value-added Therblig ( VAT ) can be calculated under the conditions of the FSM and 2 

CSM. 3 

3.2.7. Implementing the FSM  4 

    Establishing the FSM is not the ultimate goal; implementing the FSM to realize energy savings and improve 5 

efficiency should be the focus. As shown in Fig. 11, the initial NC program should be modified by considering all 6 

the areas that can be improved in the FSM to obtain the improved NC program. Then the improved NC program 7 

will be loaded into the machine tool through the control panel and the actual machining process will be performed, 8 

and the power and energy information are measured simultaneously for the verification of energy saving and 9 

efficiency improvement results. 10 

 11 

Fig. 11. Implementation of the FSM. 12 

4. Case study 13 

To show the validity of the proposed approach, an analysis of the machining processes of a typical workpiece 14 

was performed. In order to demonstrate the case more clearly, this section is divided into eight subparts, as shown 15 

in Fig. 12. 16 
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 1 

Fig. 12. Eight subparts of the machining case study. 2 

4.1. Basic information about the machining case 3 

The blank (Φ = 48mm, L = 150mm, material = C45 Steel) was machined to shape the test workpiece through 4 

five cutting processes: face turning, rough external turning, fine external turning, chamfering and grooving. The 5 

workpiece and corresponding NC program are shown in Fig. 13. The machining case was conducted on a CK6153i 6 

CNC lathe, which was manufactured by Jinan First Machine Tool Group Co., Ltd. of China.  7 

 8 

 9 

 10 

 11 

 12 

Fig. 13. Test workpiece and NC program. 13 

4.2. Extracting information for establishing the CSM 14 

    According to the activity extraction method and mapping between activities and Therbligs, as researched in 15 

our previous literature [85, 86], thirty-five activities can be extracted from the machining process for the above 16 

workpiece. The extraction process is briefly shown in Fig. 14, for more detailed information about the extracting 17 

processes, refer to reference [85, 86]. The extracted activities and corresponding Therbligs of the machining case 18 

are listed in Table 2. 19 
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 1 
Fig. 14. Extraction process of the machining activities and corresponding Therbligs. 2 
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Table 2  

Extracted activities and corresponding Therbligs for the machining case. 

No Activity  Duration (s)  Corresponding Therbligs 

1 Executing standby 5.00 Therblig-SO ;-L  

2 Rotating spindle 0.00 Therblig-SO ;-L ;-SR ; 

3 Changing cutter 0.00 Therblig-SO ;-L ;-SR ;-TC  

4 Rapid positioning-xz 0.25 Therblig-SO ;-L ;-SR ;-XF ;-ZF  

5 Rapid positioning-z 0.32 Therblig-SO ;-L ;-SR ;-ZF  

6 Feeding-z 7.20 Therblig-SO ;-L ;-SR ;-ZF  

7 Feeding-x 1.20 Therblig-SO ;-L ;-SR ;-XF  

8 Cutting-x 28.80 Therblig-SO ;-L ;-SR ;-XF ;-MC  

9 Rapid positioning-z 0.006 Therblig-SO ;-L ;-SR ;-ZF  

10 Rapid positioning-x 0.23 Therblig-SO ;-L ;-SR ;-XF  

11 Feeding-z 0.80 Therblig-SO ;-L ;-SR ;-ZF  

12 Cutting-z 18.4 Therblig-SO ;-L ;-SR ;-ZF ;-MC  

13 Rapid positioning-x 0.02 Therblig-SO ;-L ;-SR ;-XF  

14 Rapid positioning-z 0.17 Therblig-SO ;-L ;-SR ;-ZF  

15 Rotating spindle 0.00 Therblig-SO ;-L ;-SR ; 

16 Feeding-x 3.00 Therblig-SO ;-L ;-SR ;-XF  

17 Feeding-z 3.60 Therblig-SO ;-L ;-SR ;-ZF  

18 Cutting-z 13.80 Therblig-SO ;-L ;-SR ;-ZF ;-MC  

19 Rapid positioning-x 0.025 Therblig-SO ;-L ;-SR ;-XF  

20 Rapid positioning-z 0.17 Therblig-SO ;-L ;-SR ;-ZF  

21 Feeding-xz 4.33 Therblig-SO ;-L ;-SR ;-XF ;-ZF  

22 Cutting-xz 1.27 Therblig-SO ;-L ;-SR ;-XF ;-ZF ;-MC  

23 Rapid positioning-x 0.075 Therblig-SO ;-L ;-SR ;-XF ; 

24 Rapid positioning-xz 0.20 Therblig-SO ;-L ;-SR ;-XF ;-ZF  

25 Rapid positioning-z 0.42 Therblig-SO ;-L ;-SR ;-ZF  

26 Rotating spindle 0.00 Therblig-SO ;-L ;-SR ; 

27 Changing cutter 3.00 Therblig-SO ;-L ;-SR ;-TC  

28 Rapid positioning-xz 0.25 Therblig-SO ;-L ;-SR ;-XF ;-ZF  

29 Rapid positioning-z 0.49 Therblig-SO ;-L ;-SR ;-ZF  

30 Feeding-x 6.00 Therblig-SO ;-L ;-SR ;-XF  

31 Cutting-x 4.80 Therblig-SO ;-L ;-SR ;-XF ;-MC  

32 Rapid positioning-x 0.095 Therblig-SO ;-L ;-SR ;-XF  

33 Rapid positioning-xz 0.20 Therblig-SO ;-L ;-SR ;-XF ;-ZF  

34 Rapid positioning-z 0.54 Therblig-SO ;-L ;-SR ;-ZF  

35 Stop spindle 10.0 Therblig-SO ;-L ; 
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4.3. Establishing the CSM 1 

    According to Table 2 and the establishment steps of TVSM given in section3.2.3, the CSM of TVSM of the 2 

machining case can be established. Taking activity1 as an example, the corresponding Therbligs of are Therblig-SO 3 

 and -L . Therefore, Therblig-SO  and -L  are embedded into the activity1 in blue (NVAT). Since 4 

no value-added Therbligs are contained in activity1, it is identified as a NVAA. According to Table 2, the C/T of 5 

activity1 is 5.00 s, which is filled into the corresponding data box. In addition, the timeline is drawn under the data 6 

box of activity1. The timeline of activity1 is drawn in blue since this activity is a NVAA, and then, the C/T value 7 

(5.00s) is labeled on the corresponding timeline. Following the same approach, the date for the remaining 8 

thirty-four activities can be drawn and the TM and VA of the value stream can be summarized. Finally, the CSM of 9 

TVSM of the machining case is established, as shown in Fig. 15. 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

Fig. 15. Current-State-Map of TVSM of the machining case. 22 

4.4. Analyzing the CSM 23 

Based on the above CSM, it is obvious that there are only five value-added activities, activity 8, 12, 18, 22, 24 

and 31, from a lean energy perspective. Each VAA contains one value-added Therblig, which is depicted in red. 25 

According to the CSM, the value-added time (VA) and total machining time (TM) of the machining case are 67.07 26 
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s and 114.66 s, respectively. Hence, the time efficiency of the VAA can be evaluated (58.49%) based on Equation 1 

(1). In addition, cycle time and Therbligs of each activity have been shown in the CSM. In conjunction with the 2 

Therblig power models established in our previous work [85], the energy demand of each Therblig or activity and 3 

that of the total machining process can be calculated. Specifically, the calculated energy demands of the five 4 

value-added activities and total machining process are 32106.24 J, 28711.36 J, 26767.86 J, 2558.42 J, 7293.60 J 5 

and 140963.77 J, respectively. Therefore, the energy demand of the value-added activities can be obtained (EVAA 6 

=97437.48 J). The energy efficiency of the value-added activity can be evaluated (69.12%) based on Equation (2). 7 

Similarly, the energy efficiency of the value-added Therblig can be calculated based on Equation (3). The time and 8 

energy efficiency ( VA , VAA  and VAT ) of the machining case are summarized in Fig. 16. 9 

 10 

 11 

 12 

 13 

Fig. 16. Time and energy efficiency ( VA , VAA and VAT ) of the machining case (CSM). 14 

4.5. Establishing the FSM 15 

As the time and energy efficiency of VAA are both less than 70%, some room for improvement exists. When it 16 

comes to value-added Therblig, the energy efficiency is only 19.54% and the potential to improve is significant. 17 

Even during the value-added activity, non-value-added Therbligs still exist and account for a large proportion of the 18 

energy demand. The TVSM method obviously provides a detailed analysis and exposes improvement opportunities 19 

for lean energy machining. In order to improve the time and energy efficiency of the machining process, several 20 

energy efficiency improving strategies can be adopted: 1) eliminate waste Therblig/activity; 2) decrease the 21 

duration of NVAT and NVAA; 3) decrease the power of NVAT and NVAA.  22 

For instance, the first material-cutting Therblig (VAT) was not executed until activity8, therefore early 23 

execution of Therblig-SR is a waste. Then the execution time of activity-2 "spindle rotating" in the CSM can be 24 

postponed and Therblig-SR  (NVAT) in activities 2-6 in the CSM can be eliminated, as shown in the FSM of 25 

TVSM (see Fig. 17). The executing time of Therblig-SR  can be reduced to 7.77s by adopting the above 26 

approach. The spindle speed was 500 r/min before the improvement was adopted. According to the Therblig power 27 
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models established in [85], the power of Therblig-SR  can be calculated as 1 

PSR=1.09n+41.12=1.09×500+41.12=586.12 W. Consequently, the energy demand can be reduced 4554.15 J. 2 

Moreover, for some feeding activities, feeding speed can be increased to decrease the feeding time. For example, 3 

duration of activity-6 "feeding-z" in the CSM (corresponding activity-5 in the FSM) is 7.20s. The feeding time can 4 

be decreased into 3.60 s via increasing the feeding speed from 50 to 100 mm/min. Consequently, the executing time 5 

of Therblig-SO ,  -L  and -ZF  and activity-6 (corresponding activity-5 in the FSM) are all reduced, 6 

as shown in Fig. 19. Although the increased feeding speed makes the power of Therblig-ZF increase, the 7 

reduction of executing time plays a major role in the change of energy demand. The power of Therblig-SO  and 8 

-L  for the researched CK6153i lathe are 312.1 W and 20 W, respectively [85]. Moreover, the power of 9 

Therblig-ZF  at the speed of 50 and 100 mm/min can be calculated (2.0 W and 3.5 W) according to the 10 

formula PZF=0.49+0.03vzf+2.32×10-6vzf
2 [85]. Therefore, the energy reduction of Therblig-SO  and -L  can be 11 

obtained (312.1×3.6=1123.56J; 20×3.6=72 J). Additionally, the energy reduction of Therblig-ZF  can be 12 

calculated(2.0×7.2-3.5×3.6=1.8 J). Then, the total energy reduction of activity-6 "feeding-z" (activity-5 in the FSM) 13 

can be obtained (1123.56+72+1.8=1197.36J). Following the same approach, some other areas for improvement can 14 

be identified and marked in the FSM of TVSM, as shown in Fig. 17. 15 
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 1 

Fig. 17. Future-State-Map of TVSM of the machining case. 2 

4.6. FSM v.s CSM 3 

    Based on the established CSM and FSM, the savings of duration and energy of Therbligs can be calculated. 4 

Fig. 18 shows the calculation process of savings of duration and energy for one activity. Following the same 5 

method, these savings for all the activities can be obtained. Then, the total time and energy savings of the 6 

machining process can be obtained by summing up the savings of each activity, as shown in Fig. 19. 7 
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 1 

Fig. 18. Calculation of savings of duration and energy for one activity. 2 

 3 

Fig. 19. Improvement results of energy demands of Therbligs and the machining process. 4 
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remarkable. The reasons are listed as follows: 1) for Therblig-SO , the power (312.1 W) and reduced time 1 

(17.06 s) are both significant;  2). for Therblig-L , although the power consumed(20 W) is not large, the energy 2 

saved is also significant due to the large reduction in duration of the activity (70.49 s);  and 3) for Therblig-SR 3 

, to maintain the spindle rotating at a high speed, usually more than 500 r/min, the power consumed by this 4 

Therblig is relatively high (586.1 W at 500 r/min). Therefore, considerable energy can be saved with this type of 5 

Therblig in conjunction with the reduced duration (8.605 s). The reduction of energy of Therblig-XF  and -ZF 6 

 are not significant. Because the reduced durations are obtained by increasing the feeding power. The tradeoff 7 

between the reduced duration and increased power makes the energy savings of Therblig-XF and -ZF  are 8 

negligible. The energy demand of Therblig-XF  is even increased by 0.24% due to its increased power. 9 

However, the energy savings of Therblig-SO , -L  , -SR   play a major role in the energy changes in 10 

the machining case. Consequently, the total energy demand of the machining process can be reduced by 8.36% with 11 

implementing the FSM, as shown in Fig. 19. 12 

    The time and energy efficiency ( VA , VAA  and VAT ) of the machining case can also be improved by 13 

implementing the FSM, as shown in Fig. 20. It can be seen that VA , VAA and VAT are all improved to a certain 14 

extent. The adopted strategies either shorten the duration or reduce the power of the NVATs and NVAAs, and 15 

eliminate waste NVATs and NVAAs. Meanwhile, this improvement is achieved without changing the value-added 16 

time and parameters for actually cutting material; the machining quality is therefore not affected. This is consistent 17 

with the aim of lean energy machining; machining more material with less energy without lowering the machining 18 

quality. 19 

 20 

 21 

 22 

 23 

 24 

 25 

Fig. 20. Time and energy efficiency ( VA , VAA and VAT ) of the machining case (FSM). 26 
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4.7. Implementing the FSM  1 

    Based on the established FSM (see Fig. 17), all the improvement areas were reflected in the improved NC 2 

program. Then the machining case was performed again under the FSM conditions, as shown in Fig. 21. 3 

Simultaneously, the power and energy data during the machining processes were collected with the data acquisition 4 

system shown in Fig. 21b. For detailed information about the data acquisition system, refer to reference [74,85]. 5 

Consequently, the measured power curve under the FSM conditions was obtained, as depicted in Fig. 21d. Similarly, 6 

the measured power curve under the CSM conditions was obtained, as shown in Fig. 21c.  7 

 8 

Fig. 21. Relevant information during implementing the FSM. 9 

5. Results and discussion  10 

    The energy consumption and efficiency under the CSM and FSM conditions have been estimated in section 11 

4.6. In addition, the power and energy information under the CSM and FSM conditions have been measured 12 

according to section 4.7. Next the comparisons of the estimated values verse the measured values have been 13 

conducted to show the validity of the proposed method. As shown in Fig. 22, we estimated the total energy demand 14 

of the machining case would be reduced by 8.36% by implementing the FSM. The measured results showed that 15 

the actual reduction of the total energy demand was 7.65%. The measured result shows that the energy savings for 16 

machining one part is 12364.3 J by implementing the approach in this paper. Consequently, the total energy saving 17 

could reach up to 1.03*105 kWh for one year, assuming 100 machine tools with 1000parts manufactured per 18 

machine per day for 300days per year. 19 
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 1 

Fig. 22. Measured v.s. estimated total energy demand. 2 

     According to Fig. 20, the time efficiency of the value-added activity ( VA ) was predicted to be improved by 3 

10.23% via implementing the FSM. As illustrated in Fig. 23a, the actual measured time efficiency of the 4 

value-added activity was increased by 8.12%. Similarly, the energy efficiency of the value-added activity ( VAA ) 5 

and the value-added Therblig ( VAT ) were predicted to be increased by 5.71% and 1.78%, respectively. The 6 

measured increased percentage of these two efficiencies were 4.95% and 1.58%, as shown in Fig. 23b and Fig. 23c.  7 

 8 

Fig. 23. Measured v.s. estimated time and energy efficiency increases. 9 

    The differences between the estimated and measured values are small, generally less than 5%. Moreover, the 10 

measured results showed that the time and energy efficiencies of the machining case were significantly improved 11 

by implementing the FSM, with VA improved by 8.12%, VAA  improved by 4.95%, and VAT improved by 12 

1.58%, which shows the effectiveness of the proposed method. 13 
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and emission reduction. To effectively manage and control the energy consumption in manufacturing, both the 1 

industry and the government are trying to establish the energy consumption allowance for workpieces in the 2 

manufacturing industry [88,89]. The establishment of an energy consumption allowance will bring a new challenge 3 

to manufacturing enterprises. The energy consumption of any product should meet or be even lower than the 4 

established allowance. The approach in this paper is a promising method to help manufacturing enterprise achieve 5 

this goal. This approach can support the designers to create high energy efficiency machining processes during the 6 

planning stage. More specifically, there are two key recommendations for designers during the machining process 7 

planning stage: (1) as shown in Fig. 24, after the cutting tool fast approaching the workpiece, usually following two 8 

stages: air-cutting stage and material-cutting stage. Energy savings and efficiency improvement can be achieved 9 

through increasing the feeding speed of the air-cutting stage (E.g. stage ②→③ and stage ③→④), while not 10 

changing the feeding speed of material-cutting stage. The feeding speeds of these two sub-stages are usually 11 

designed to be the same and due to cutting constraints, this feeding speed cannot be fast enough, resulting in energy 12 

and efficiency wastes. The proposed method can help the designer determine the air-cutting stages and analyze the 13 

effect of feeding speed of the air-cutting stage on the total energy consumption. Finally, energy savings can be 14 

achieved by changing the feeding speeds of air-cutting stages. 15 

 16 

Fig. 24. Energy saving recommendations related to feeding speed. 17 

(2) It is well known that energy savings can be achieved by reducing spindle idle time, however, to exactly 18 

determine the start and stop time of a spindle without affecting normal processing is not an easy task. With the help 19 

the TVSM tool, the designer can easily figure out the energy wastes of Therblig-spindle rotating and reduce them, 20 

which can achieve significant energy savings. As shown in Fig. 25, the energy consumption of stage ①→⑤ can 21 

be significantly reduced by adjusting the spindle start time and removing the energy wastes of Therblig-spindle 22 

rotating. 23 
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 1 

Fig. 25. Energy saving recommendations related to spindle rotation. 2 

6. Conclusions 3 

    Realization of lean energy machining plays an important role in energy savings in the manufacturing industry. 4 

Although extensive studies have focused on optimizing the cutting parameters of the machining process, effective 5 

methods to accurately determine and reduce the energy wastes in NCA are still lacking. To bridge this gap, a novel 6 

TVSM method is proposed in this paper. The CSM of TVSM can be built according to the actual machining 7 

process by following the given steps. Based on the CSM, the non value-added activities and Therbligs can be easily 8 

determined, showing the opportunities for energy improvement. To achieve lean energy machining, the FSM can be 9 

established by eliminating non-valued-added activities and Therbligs, and shortening the time or lowering the 10 

power requirement of non-valued-added activities and Therbligs. By implementing the FSM, time and energy 11 

efficiencies can be improved in machining without decreasing the machining quality, which is consistent with the 12 

goal of lean energy machining. This method was validated by a typical machining case study; the results showed 13 

that the total energy demand was reduced by 7.65%, and the time efficiency of value-added activity was improved 14 

by 8.12% , and the energy efficiency of value-added activity and Therblig are raised by 4.95% and 1.58%, 15 

respectively. 16 

The advantages of this method are: (1) due to not changing the cutting parameters, the machining quality is 17 

therefore not affected; (2) energy savings can be achieved without shortening the service life of the cutting tool; (3) 18 

the energy demand of NVAA occupies a large proportion of the total energy in the machining process and the 19 

energy saving potential is significant; (4) the approach can support designers to create a high energy efficiency 20 
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machining process during the process planning stage. This paper mainly focused on evaluating the non-cutting 1 

activities and Therbligs, and reducing their energy demand. Optimization of cutting parameters, of course, is 2 

another important way for energy saving. In future work, better improvement results can be achieved by combining 3 

the method proposed in this paper with the optimization of cutting parameters. 4 
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