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We study the existence of positive periodic solutions of second-order singular differential equations.The proof relies on Schauder’s
fixed point theorem. Our results generalized and extended those results contained in the studies by Chu and Torres (2007) and
Torres (2007) . In some suitable weak singularities, the existence of periodic solutions may help.

1. Introduction

The theory of second-order periodic differential equation
has been widely studied [1–20] because of great practical
importance. In this paper, we apply Schauder’s fixed point
theorem to study the existence of positive solutions of the
second-order periodic differential equation

𝑥

+ 𝑎 (𝑡) 𝑥 = 𝑓 (𝑡, 𝑥) + 𝑒 (𝑡) , (1)

where 𝑎, 𝑒 are continuous and 1-periodic functions and the
nonlinearity 𝑓 is continuous in (𝑡, 𝑥), 1-periodic in 𝑡, and
singular at 𝑥 = 0. In addition, 𝑒 may take some negative
values.

Beginning with the paper of Lazer and Solimini [13], the
semilinear singular differential equation

𝑥

+ 𝑎 (𝑡) 𝑥 =

𝑝 (𝑡)

𝑥
𝜆
+ 𝑒 (𝑡) , (2)

where 𝑎,𝑝, 𝑒 ∈ 𝐶[0, 1] and 𝜆 > 0, has received the attention of
many researchers during the last two decades [5, 7, 10, 21]. In
[2], the author investigated the existence of positive solutions
of (2) for three cases when 𝑒

∗
> 0, 𝑒
∗
= 0, and 𝑒∗ ≤ 0 through

a basic application of Schauder’s fixed point theorem. Here,
let 𝑝∗ and 𝑝

∗
denote the essential supremum and infimum

of a function 𝑝 ∈ 𝐿1[0, 1], if they exist. For any continuous
function 𝑝 in [0, 1], we set

𝑝 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑝 (𝑠) 𝑑𝑠. (3)

In [1], the authors generalized the results of [2] and
considered the second-order periodic semilinear singular
equation

𝑥

+ 𝑎 (𝑡) 𝑥 =

𝑝 (𝑡)

𝑥
𝛼
+ 𝑞 (𝑡) 𝑥

𝛽
+ 𝑒 (𝑡) , (4)

with 𝑎, 𝑝, 𝑞, 𝑒 ∈ 𝐶 [0, 1] and 𝛼, 𝛽 > 0. By Schauder’s
fixed point theorem, they established the existence of positive
periodic solutions to (4), if 𝑒∗ > 0 and 𝑒

∗
= 0.

Although [1, Theorem 3.1] can deal with the cases of the
existence of positive periodic solutions to (4), the authors
there did not consider these two cases as applications of the
existence of positive periodic solutions of (4) if 𝑒∗ ≤ 0 or
𝑒
∗
< 0 < 𝑒

∗. We also generalize some of the results of [1, 2] in
certain ways.

The remaining part of the paper is organized as follows.
In Section 2, some preliminary results are given. In Sections 3
and 4, we will state and prove the main results of the paper, as
well as some applications to (2) and (4). In Section 5, we apply
the results established in this paper to two specific equations.
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2. Preliminaries

Throughout this paper, we assume that the equation, known
as Hill’s equation,

𝑥

+ 𝑎 (𝑡) 𝑥 = 0 (5)

with periodic boundary conditions

𝑥 (0) = 𝑥 (1) , 𝑥


(0) = 𝑥


(1) (6)

satisfies the following standing hypothesis:

(A) associated Green’s function 𝐺(𝑡, 𝑠) is nonnegative for
all (𝑡, 𝑠) ∈ [0, 1] × [0, 1].

In other words, the antimaximum principle holds. Under
this assumption, the function 𝑒(𝑡) is just the unique 1-periodic
solution of the linear equation

𝑥

+ 𝑎 (𝑡) 𝑥 = 𝑒 (𝑡) . (7)

Now we make condition (A) clear. When 𝑎(𝑡) = 𝑘
2,

condition (A) is equivalent to 0 < 𝑘2 ≤ 𝜇
1
= 𝜋
2. Note that

𝜇
1
is the first eigenvalue of the linear problem with Dirichlet

conditions 𝑥(0) = 0 = 𝑥(1). For a nonconstant function 𝑎(𝑡),
there is a 𝐿𝑝-criterion proved in [16]. LetK(𝑞) denote the best
Sobolev constant in the following inequality:

𝐶 ‖𝑢‖
2

𝑞
≤






𝑢





2

2
, ∀𝑢 ∈ 𝐻

1

0
(0, 1) . (8)

The explicit formula for K(𝑞) is

K (𝑞) =
{
{
{
{

{
{
{
{

{

2𝜋

𝑞

(

2

2 + 𝑞

)

1−2/𝑞

(

𝛾 (1/𝑞)

𝛾 ((1/2) + (1/𝑞))

)

2

,

if 1 ≤ 𝑞 < ∞,
4, if 𝑞 = ∞,

(9)

where 𝛾 is the gamma function.
We write 𝑝 ≻ 0 if 𝑝 ≥ 0 for a.e. 𝑡 ∈ [0, 1] and 𝑝 is positive

in a set of positive measures.

Lemma 1 (see [16]). Assume that 𝑎(𝑡) ≻ 0 and 𝑎 ∈ 𝐿𝑝[0, 1]
for some 1 ≤ 𝑝 ≤ ∞. If

‖𝑎‖
𝑝
≤ 𝐾 (2𝑝

∗
) , (10)

then the standing hypothesis (A) holds.

Remark 2. In [3, 12, 16], the existence results are based on
the positiveness of 𝐺(𝑡, 𝑠) > 0, which plays a very important
role in employing some fixed point theorems in cones for
completely continuous operators. Our assumption (A) only
needs that 𝐺(𝑡, 𝑠) is nonnegative, and therefore our results
cover the critical case, which was not covered in the above
three papers.

3. Main Results

In this section, we establish the main result about the
existence of positive periodic solutions for (1).

Theorem 3. Suppose that the following conditions hold.

(H
1
)There exist nonnegative continuous functions 𝑏, 𝑐, 𝑑 on
[0, 1] and 𝑔, ℎ on (0, +∞) such that 𝑏 ≥ 𝑐 ≻ 0, 𝑔 > 0
is strictly decreasing, and ℎ/𝑔 is increasing. Moreover,
there holds for any 𝑡 ∈ [0, 1] and 𝑥 ∈ (0, +∞)

𝑐 (𝑡) 𝑔 (𝑥) ≤ 𝑓 (𝑡, 𝑥) ≤ 𝑏 (𝑡) 𝑔 (𝑥) + 𝑑 (𝑡) ℎ (𝑥) . (11)

(H
2
)There exists a positive constant 𝑅 such that

𝑅 > 𝑔 (𝑅) (
̃
𝑏
∗
+

ℎ (𝑅)

𝑔 (𝑅)

̃
𝑑
∗
) + 𝑒
∗
, (12)

𝑒
∗
≥ 𝑔
−1
(

𝑅 − 𝑒
∗

̃
𝑏
∗
+ (ℎ (𝑅) /𝑔 (𝑅))

̃
𝑑
∗

) − 𝑔 (𝑅) 𝑐
∗
. (13)

Then (1) has at least one positive periodic solution.

Proof. Let 𝐶
1
denote the set of all continuous 1-periodic

functions. We define a completely continuous map 𝑇 : 𝐶
1
→

𝐶
1
by

(𝑇𝑥) (𝑡) := ∫

1

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑥 (𝑠)) + 𝑒 (𝑠)] 𝑑𝑠

= ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + 𝑒 (𝑡) .

(14)

It is clear that a periodic solution of (1) is just a fixed point of
𝑇. It suffices to prove the existence of the fixed point of map
𝑇.

Let 𝑅 be the positive constant in (H
2
) and set

𝑟 := 𝑔
−1
(

𝑅 − 𝑒
∗

̃
𝑏
∗
+ (ℎ (𝑅) /𝑔 (𝑅))

̃
𝑑
∗

) . (15)

Combining (12) with the fact that 𝑔 is positive and strictly
decreasing, we have 𝑅 > 𝑟 > 0. We introduce a set by

Ω := {𝑥 ∈ 𝐶
1
: 𝑟 ≤ 𝑥 (𝑡) ≤ 𝑅, ∀𝑡 ∈ [0, 1]} . (16)

Obviously, Ω is a closed convex set. For any 𝑥 ∈ Ω and 𝑡 ∈
[0, 1], by assumption (11), we get

(𝑇𝑥) (𝑡) ≥ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑐 (𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝑒 (𝑡) . (17)

Since 𝑥 (𝑠) ≤ 𝑅 and 𝑔 is strictly decreasing, there holds

(𝑇𝑥) (𝑡) ≥ 𝑔 (𝑅) 𝑐 (𝑡) + 𝑒 (𝑡) ≥ 𝑔 (𝑅) 𝑐
∗
+ 𝑒
∗
. (18)

Together with assumption (13), the above inequality leads to

(𝑇𝑥) (𝑡) ≥ 𝑔
−1
(

𝑅 − 𝑒
∗

̃
𝑏
∗
+ (ℎ (𝑅) /𝑔 (𝑅))

̃
𝑑
∗

) = 𝑟. (19)
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Similar discussion shows that there holds, for any 𝑥 ∈ Ω and
𝑡 ∈ [0, 1],

(𝑇𝑥) (𝑡)

≤ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑥 (𝑠)) (𝑏 (𝑠) +

ℎ (𝑥 (𝑠))

𝑔 (𝑥 (𝑠))

𝑑 (𝑠)) 𝑑𝑠 + 𝑒 (𝑡)

≤ 𝑔 (𝑟) (
̃
𝑏 (𝑡) +

ℎ (𝑅)

𝑔 (𝑅)

̃
𝑑 (𝑡)) + 𝑒 (𝑡)

≤ 𝑔 (𝑟) (
̃
𝑏
∗
+

ℎ (𝑅)

𝑔 (𝑅)

̃
𝑑
∗
) + 𝑒
∗
= 𝑅.

(20)

Consequently, we get the conclusion that there holds 𝑇(Ω) ⊂
Ω. By Schauder’s fixed point theorem, we obtain that there
exists at least one fixed point of𝑇, which completes the proof.

Applying Theorem 3 to a special case, we have the
following result.

Corollary 4. Suppose that 𝑒∗ ≤ 0 and there hold condition
(H
1
) and the following one.

(H∗
2
) There exists a positive constant 𝑅 such that

𝑅 > 𝑔 (𝑅) (
̃
𝑏
∗
+

ℎ (𝑅)

𝑔 (𝑅)

̃
𝑑
∗
) ,

𝑒
∗
≥ 𝑔
−1
(

𝑅

̃
𝑏
∗
+ (ℎ (𝑅) /𝑔 (𝑅))

̃
𝑑
∗

) − 𝑔 (𝑅) 𝑐
∗
.

(21)

Then (1) has at least one positive periodic solution.

4. Applications

4.1. The Case 𝑒∗ ≤ 0. In this subsection, we consider (4) in
the cases when 𝑒∗ ≤ 0. To meet the condition in Corollary 4,
we let

𝑔 (𝑥) = 𝑥
−𝛼
, ℎ (𝑥) = 𝑥

𝛽
, 𝑥 ∈ (0, +∞) . (22)

We note that to verify the existence of the positive periodic
solution of (4) by Corollary 4 an important step is to find𝑅 >
0 such that

𝑒
∗
≥ (

̃
𝑏
∗
+
̃
𝑑
∗
𝑅
𝛼+𝛽

𝑅

)

1/𝛼

−

𝑐
∗

𝑅
𝛼
, (23)

where 𝑏, 𝑐,𝑑 are the functions in condition (H
1
). Let𝑚 = 1/𝑅.

Then finding 𝑅 > 0 with (23) is equivalent to finding 𝑚 > 0
satisfying

𝑒
∗
≥ [𝑚(

̃
𝑏
∗
+
̃
𝑑
∗
(

1

𝑚

)

𝛼+𝛽

)]

1/𝛼

− 𝑐
∗
𝑚
𝛼
. (24)

To this end, we consider the following function:

𝐹 (𝑚) := [𝑚(
̃
𝑏
∗
+
̃
𝑑
∗
(

1

𝑚

)

𝛼+𝛽

)]

1/𝛼

− 𝑐
∗
𝑚
𝛼

= 𝑚
𝛼
[(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

1/𝛼

− 𝑐
∗
] ,

𝑚 ∈ (0, +∞) .

(25)

By direct calculation, we have

𝐹


(𝑚)

= 𝛼𝑚
𝛼−1
[(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

1/𝛼

− 𝑐
∗
]

+ 𝑚
𝛼
[

1

𝛼

(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

(1/𝛼)−1

× ((1 − 𝛼
2
)
̃
𝑏
∗
𝑚
−𝛼
2

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)
̃
𝑑
∗
𝑚
−𝛼−𝛽−𝛼

2

) ]

=

1

𝛼

𝑚
𝛼−1

× {𝛼
2
[(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

1/𝛼

− 𝑐
∗
]

+ 𝑚[(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

(1/𝛼)−1

× ((1 − 𝛼
2
)
̃
𝑏
∗
𝑚
−𝛼
2

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)

×
̃
𝑑
∗
𝑚
−𝛼−𝛽−𝛼

2

) ]}

=

1

𝛼

𝑚
𝛼−1

× {𝛼
2
[(
̃
𝑏
∗
𝑚
1−𝛼
2

+ 𝑑

∗

𝑚
1−𝛼−𝛽−𝛼

2

)

1/𝛼

− 𝑐
∗
]

+ [(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

(1/𝛼)−1

× ((1 − 𝛼
2
)
̃
𝑏
∗
𝑚
1−𝛼
2

+ (1 − 𝛼 − 𝛽 − 𝛼
2
) 𝑑

∗

𝑚
1−𝛼−𝛽−𝛼

2

) ]}
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=

1

𝛼

𝑚
𝛼−1

× {[𝛼
2
(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

1/𝛼

+ (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

(1/𝛼)−1

× ((1 − 𝛼
2
)
̃
𝑏
∗
𝑚
1−𝛼
2

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)

×
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)] − 𝛼
2
𝑐
∗
}

=

1

𝛼

𝑚
𝛼−1

× {(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

(1/𝛼)−1

× [𝛼
2
(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

+ ((1 − 𝛼
2
)
̃
𝑏
∗
𝑚
1−𝛼
2

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)

×
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)] − 𝛼
2
𝑐
∗
}

=

1

𝛼

𝑚
𝛼−1

× {(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

(1/𝛼)−1

× [
̃
𝑏
∗
𝑚
1−𝛼
2

+ (𝛼
2
+ (1 − 𝛼 − 𝛽 − 𝛼

2
))

×
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

] − 𝛼
2
𝑐
∗
}

=

1

𝛼

𝑚
𝛼−1

× {(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

(1/𝛼)−1

× [
̃
𝑏
∗
𝑚
1−𝛼
2

+ (1 − 𝛼 − 𝛽)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

]

− 𝛼
2
𝑐
∗
} .

(26)

Suppose that 1 − 𝛼2 > 0 and 1 − 𝛼 − 𝛽 − 𝛼2 > 0. Set

Φ (𝑚) =: (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

(1/𝛼)−1

× [
̃
𝑏
∗
𝑚
1−𝛼
2

+ (1 − 𝛼 − 𝛽)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

] ,

𝑚 ∈ [0, +∞) .

(27)

It is clear that Φ is continuous and increasing on [0, +∞).
Since there hold Φ(0) = 0 and lim

𝑚→+∞
Φ(𝑚) = +∞, there

exists a unique 𝑚
0
∈ (0, +∞) such that Φ(𝑚

0
) = 𝛼

2
𝑐
∗
. It

follows that 𝐹(𝑚
0
) = 0. In addition, we note that 𝐹(𝑚) < 0

for 0 < 𝑚 < 𝑚
0
and 𝐹(𝑚) > 0 for 𝑚 > 𝑚

0
. Hence, we get

the conclusion that 𝐹 possesses a minimum at𝑚 = 𝑚
0
. Based

upon the above discussion, we have that𝑚
0
is the best choice

for satisfying inequality (24).

Theorem 5. Suppose that 0 < 𝛼, 𝛽 < 1, 1−𝛼−𝛼2−𝛽 > 0, and
there exist nonnegative continuous functions 𝑏, 𝑐, 𝑑 on [0, 1]
such that 𝑏 ≥ 𝑐 ≻ 0 and

𝑐 (𝑡) 𝑥
−𝛼
≤ 𝑝 (𝑡) 𝑥

−𝛼
+ 𝑞 (𝑡) 𝑥

𝛽
≤ 𝑏 (𝑡) 𝑥

−𝛼
+ 𝑑 (𝑡) 𝑥

𝛽
,

𝑡 ∈ [0, 1] , 𝑥 ∈ (0, +∞) .

(28)

If there holds

0 ≥ 𝑒
∗
≥ 𝑚
𝛼

0
[(
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
)

1/𝛼

− 𝑐
∗
] , (29)

where𝑚
0
is the unique positive solution of the equation

(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

)

(1/𝛼)−1

× [
̃
𝑏
∗
𝑚
1−𝛼
2

+ (1 − 𝛼 − 𝛽)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

] = 𝛼
2
𝑐
∗
,

(30)

then (4) has at least one positive periodic solution.

Proof. Let 𝑔(𝑥) = 𝑥
−𝛼, ℎ(𝑥) = 𝑥

𝛽, and 𝑥 ∈ (0, +∞).
It is obvious that 𝑔 > 0 is strictly decreasing and ℎ/𝑔 is
nondecreasing. According to the assumption about 𝑏, 𝑐, 𝑑, we
have that condition (H

1
) of Theorem 3 holds.

Let 𝑅 = 1/𝑚
0
. It follows from assumption (29) that there

holds

𝑒
∗
≥ 𝑔
−1
(

𝑅

̃
𝑏
∗
+ (ℎ (𝑅) /𝑔 (𝑅))

̃
𝑑
∗

) − 𝑔 (𝑅) 𝑐
∗
. (31)

It suffices to verify that 𝑅 satisfies

𝑅 > 𝑔 (𝑅) (
̃
𝑏
∗
+

ℎ (𝑅)

𝑔 (𝑅)

̃
𝑑
∗
) , (32)

which is equivalent to the inequality

𝑚
𝛼+1

0
(𝑏

∗

𝑚
1−𝛼
2

0
+ 𝑑

∗

𝑚
1−𝛼−𝛽−𝛼

2

0
)

1/𝛼

< 1. (33)

Due to (30), we get

𝛼
2
𝑐
∗
≥ (
̃
𝑏
∗
𝑚
1−𝛼
2

0
)

(1/𝛼)−1

(
̃
𝑏
∗
𝑚
1−𝛼
2

0
) = (

̃
𝑏
∗
𝑚
1−𝛼
2

0
)

1/𝛼

, (34)

which implies

𝑚
0
≤ (

𝛼
2
𝑐
∗

̃
𝑏
∗(1/𝛼)

)

𝛼/(1−𝛼
2
)

. (35)
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We also obtain by (30)

𝛼
2
𝑐
∗
≥ (
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
)

(1/𝛼)−1

× [(1 − 𝛼 − 𝛽)
̃
𝑏
∗
𝑚
1−𝛼
2

0
+ (1 − 𝛼 − 𝛽)

̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
]

= (1 − 𝛼 − 𝛽) (
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
)

1/𝛼

,

(36)

which leads to

(
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
)

1/𝛼

≤

𝛼
2
𝑐
∗

(1 − 𝛼 − 𝛽)

. (37)

Combining (35) with (37), we have

𝑚
𝛼+1

0
(
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
)

1/𝛼

< ((

𝛼
2
𝑐
∗

̃
𝑏
∗(1/𝛼)

)

𝛼/(1−𝛼
2
)

)

𝛼+1

𝛼
2
𝑐
∗

(1 − 𝛼 − 𝛽)

= (

𝛼
2
𝑐
∗

̃
𝑏
∗(1/𝛼)

)

𝛼/(1−𝛼)

𝛼
2
𝑐
∗

(1 − 𝛼 − 𝛽)

= 𝛼
2𝛼/(1−𝛼)

(

𝑐
∗

̃
𝑏
∗

)

𝛼/(1−𝛼)
𝛼
2

(1 − 𝛼 − 𝛽)

< 1,

(38)

which completes the proof.

4.2.The Case 𝑒
∗
< 0 < 𝑒

∗. In this subsection, we consider (2)
and (4) in the case when 𝑒

∗
< 0 < 𝑒

∗. In order to study (2)
by Theorem 3, we have to set 𝑔(𝑥) = 𝑥−𝜆, ℎ(𝑥) = 0, and 𝑥 ∈
(0, +∞). Let 𝑏, 𝑐 be the functions in condition (H

1
). For the

purpose of looking for 𝑅 > 0 satisfying

𝑒
∗
≥ (

̃
𝑏
∗

𝑅 − 𝑒
∗
)

1/𝜆

−

𝑐
∗

𝑅
𝜆
, (39)

we introduce a function on (0, +∞) by

𝐹 (𝑚) := (
̃
𝑏
∗
𝑚)

1/𝜆

−

𝑐
∗
𝑚
𝜆

(1 + 𝑒
∗
𝑚)
𝜆

= 𝑚
𝜆
[
̃
𝑏
∗(1/𝜆)

𝑚
(1−𝜆
2
)/𝜆
− 𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝜆

] .

(40)

It suffices to find𝑚
0
∈ (0, +∞) such that 𝐹(𝑚

0
) ≤ 𝑒
∗
. To this

end, we compute the derivative of 𝐹. There holds

𝐹


(𝑚)

= 𝜆𝑚
𝜆−1
[
̃
𝑏
∗(1/𝜆)

𝑚
(1−𝜆
2
)/𝜆
− 𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝜆

]

+ 𝑚
𝜆
[

1 − 𝜆
2

𝜆

̃
𝑏
∗(1/𝛼)

𝑚
((1−𝜆

2
)/𝜆) −1

+𝜆𝑐
∗
𝑒
∗
(1 + 𝑒

∗
𝑚)
−𝜆−1

]

=

1

𝜆

𝑚
𝜆−1
{𝜆
2
[
̃
𝑏
∗(1/𝜆)

𝑚
(1−𝜆
2
)/𝜆
− 𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝜆

]

+ 𝜆𝑚[

1 − 𝜆
2

𝜆

̃
𝑏
∗(1/𝜆)

𝑚
((1−𝜆

2
)/𝜆) −1

+ 𝜆𝑐
∗
𝑒
∗
(1 + 𝑒

∗
𝑚)
−𝜆−1

]}

=

1

𝜆

𝑚
𝜆−1
[𝜆
2̃
𝑏
∗(1/𝜆)

𝑚
(1−𝜆
2
)/𝜆
− 𝜆
2
𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝜆

+ (1 − 𝜆
2
)
̃
𝑏
∗(1/𝜆)

𝑚
(1−𝜆
2
)/𝜆

+ 𝜆
2
𝑐
∗

𝑒
∗
𝑚

1 + 𝑒
∗
𝑚

(1 + 𝑒
∗
𝑚)
−𝜆

]

=

1

𝜆

𝑚
𝜆−1
[
̃
𝑏
∗(1/𝜆)

𝑚
(1−𝜆
2
)/𝜆
− 𝜆
2
𝑐
∗

1

1 + 𝑒
∗
𝑚

(1 + 𝑒
∗
𝑚)
−𝜆

]

=

𝑚
𝜆−1

𝜆(1 + 𝑒
∗
𝑚)
𝜆+1
[
̃
𝑏
∗(1/𝜆)

𝑚
(1−𝜆
2
)/𝜆
(1 + 𝑒

∗
𝑚)
𝜆+1

− 𝜆
2
𝑐
∗
] .

(41)

Assume 0 < 𝜆 < 1. By letting

Φ (𝑚) =:
̃
𝑏
∗(1/𝜆)

𝑚
(1−𝜆
2
)/𝜆
(1 + 𝑒

∗
𝑚)
𝜆+1

, 𝑚 ∈ [0, +∞) ,

(42)

we note that Φ is increasing, with Φ(0) = 0, and
lim
𝑚→+∞

Φ(𝑚) = +∞. Then the equation Φ(𝑚) = 𝜆2𝑐
∗
has

a unique solution 𝑚
0
∈ (0, +∞), which is also the unique

solution of 𝐹(𝑚) = 0. Since 𝐹(𝑚) < 0 for 0 < 𝑚 < 𝑚
0
and

𝐹

(𝑚) > 0 for 𝑚 > 𝑚

0
, 𝐹 attains the minimum at 𝑚 = 𝑚

0
,

which shows that we get the best choice of positive constant
satisfying 𝐹(𝑚) ≤ 𝑒

∗
.

Theorem6. Suppose that 0 < 𝜆 < 1 and there exist continuous
and nonnegative functions 𝑏, 𝑐 such that 𝑏 ≥ 𝑝 ≥ 𝑐 ≻ 0. If
𝑒
∗
< 0 < 𝑒

∗ and

𝑒
∗
≥ 𝑚
𝜆

0
[
̃
𝑏
∗(1/𝜆)

𝑚
(1−𝜆
2
)/𝜆

0
− 𝑐
∗
(1 + 𝑒

∗
𝑚
0
)
−𝜆

] , (43)

where𝑚
0
is the unique positive solution of the equation

̃
𝑏
∗(1/𝜆)

𝑚
(1−𝜆
2
)/𝜆
(1 + 𝑒

∗
𝑚)
𝜆+1

= 𝜆
2
𝑐
∗
, (44)

then (2) has at least one positive periodic solution.
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Proof. Let 𝑔(𝑥) = 𝑥
−𝛼, ℎ(𝑥) = 0, 𝑥 ∈ (0, +∞). Since

𝑏 ≥ 𝑝 ≥ 𝑐, we have, for any 𝑡 ∈ [0, 1] and any and
𝑥 ∈ (0, +∞), 𝑐(𝑡)𝑔(𝑥) ≤ 𝑝(𝑡)𝑔(𝑥) ≤ 𝑏(𝑡)𝑔(𝑥). Hence, we
conclude that condition (H

1
) inTheorem 3 is satisfied. Taking

𝑅 = (1/𝑚
0
) + 𝑒
∗, we obtain by inequality (43)

𝑒
∗
≥ 𝑚
𝜆

0
[
̃
𝑏
∗(1/𝜆)

𝑚
(1−𝜆
2
)/𝜆

0
− 𝑐
∗
(1 + 𝑒

∗
𝑚
0
)
−𝜆

]

= (
̃
𝑏
∗
𝑚
0
)

1/𝜆

−

𝑐
∗
𝑚
𝜆

0

(1 + 𝑒
∗
𝑚
0
)
𝜆
= (

̃
𝑏
∗

𝑅 − 𝑒
∗
)

1/𝜆

−

𝑐
∗

𝑅
𝜆
.

(45)

It suffices to verify

𝑅 > 𝑅
−𝜆̃
𝑏
∗
+ 𝑒
∗
, (46)

which is equivalent to

̃
𝑏
∗(1/𝜆)

𝑚
1+(1/𝜆)

0
< 1 + 𝑒

∗
𝑚
0
. (47)

It follows from (44) that ̃𝑏∗(1/𝜆)𝑚(1−𝜆
2
)/𝜆

0
≤ 𝜆
2
𝑐
∗
, which

implies

𝑚
0
≤ (

𝜆
2
𝑐
∗

̃
𝑏
∗(1/𝜆)

)

𝜆/(1−𝜆
2
)

. (48)

Together with the assumption that 𝑏 ≥ 𝑐, the above inequality
shows

̃
𝑏
∗(1/𝜆)

𝑚
1+(1/𝜆)

0
≤
̃
𝑏
∗(1/𝜆)

((

𝜆
2
𝑐
∗

̃
𝑏
∗(1/𝜆)

)

𝜆/(1−𝜆
2
)

)

(1+𝜆)/𝜆

=
̃
𝑏
∗(1/𝜆)

(

𝜆
2
𝑐
∗

̃
𝑏
∗(1/𝜆)

)

1/(1−𝜆)

= 𝜆
2/(1−𝜆)

(

𝑐
∗

̃
𝑏
∗

)

1/(1−𝜆)

< 1 < 1 + 𝑒
∗
𝑚
0
.

(49)

The proof is finished.

In the following, we consider (2). We also let 𝑔(𝑥) = 𝑥−𝛼,
ℎ(𝑥) = 𝑥

𝛽, and 𝑥 ∈ (0, +∞). We will deal with this case in a
similar manner. Let 𝑏, 𝑐, 𝑑 be the functions in condition (H

1
).

For this purpose, we note that looking for 𝑅 > 0 satisfying

𝑒
∗
≥ (

̃
𝑏
∗
+
̃
𝑑
∗
𝑅
𝛼+𝛽

𝑅 − 𝑒
∗

)

1/𝛼

−

𝑐
∗

𝑅
𝛼

(50)

is equivalent to finding𝑚 = 1/(𝑅 − 𝑒∗) > 0 such that

𝑒
∗
≥ [𝑚(

̃
𝑏
∗
+
̃
𝑑
∗
(

1 + 𝑒
∗
𝑚

𝑚

)

𝛼+𝛽

)]

1/𝛼

−

𝑐
∗
𝑚
𝛼

(1 + 𝑒
∗
𝑚)
𝛼
. (51)

Based upon this observation, we have to define

𝐹 (𝑚) := [𝑚(
̃
𝑏
∗
+
̃
𝑑
∗
(

1 + 𝑒
∗
𝑚

𝑚

)

𝛼+𝛽

)]

1/𝛼

−

𝑐
∗
𝑚
𝛼

(1 + 𝑒
∗
𝑚)
𝛼

= 𝑚
𝛼
[(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

1/𝛼

− 𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝛼

] , 𝑚 ∈ (0, +∞) .

(52)

The derivative of 𝐹 can be calculated as follows:

𝐹


(𝑚)

= 𝛼𝑚
𝛼−1
[ (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

1/𝛼

− 𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝛼

]

+ 𝑚
𝛼
[

1

𝛼

(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× ((1 − 𝛼
2
)
̃
𝑏
∗
𝑚
−𝛼
2

+ (𝛼 + 𝛽)
̃
𝑑
∗
𝑒
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽−1

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)
̃
𝑑
∗
𝑚
−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

+ 𝛼𝑐
∗
𝑒
∗
(1 + 𝑒

∗
𝑚)
−𝛼−1

]

=

1

𝛼

𝑚
𝛼−1

× {𝛼
2
[(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

1/𝛼

− 𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝛼

]

+ 𝑚 [(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1
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× ((1 − 𝛼
2
)
̃
𝑏
∗
𝑚
−𝛼
2

+ (𝛼 + 𝛽)
̃
𝑑
∗
𝑒
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽−1

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)
̃
𝑑
∗
𝑚
−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

+𝛼
2
𝑐
∗
𝑒
∗
(1 + 𝑒

∗
𝑚)
−𝛼−1

]}

=

1

𝛼

𝑚
𝛼−1

× {𝛼
2
[(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
𝛼+𝛽
)

1/𝛼

− 𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝛼

]

+ [ (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× ((1 − 𝛼
2
)
̃
𝑏
∗
𝑚
1−𝛼
2

+ (𝛼 + 𝛽)
̃
𝑑
∗
𝑒
∗
𝑚𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽−1

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

+ 𝛼
2
𝑐
∗
𝑒
∗
𝑚(1 + 𝑒

∗
𝑚)
−𝛼−1

]}

=

1

𝛼

𝑚
𝛼−1

× {𝛼
2
[(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

1/𝛼

− 𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝛼

]

+ [ (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× ( (1 − 𝛼
2
)
̃
𝑏
∗
𝑚
1−𝛼
2

+ (𝛼 + 𝛽)
̃
𝑑
∗
𝑒
∗ 𝑚

1 + 𝑒
∗
𝑚

𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

+ 𝛼
2
𝑐
∗
𝑒
∗ 𝑚

1 + 𝑒
∗
𝑚

(1 + 𝑒
∗
𝑚)
−𝛼

]}

=

1

𝛼

𝑚
𝛼−1

× { [𝛼
2
(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

1/𝛼

− 𝛼
2
𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝛼

]

+ [ (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× ((1 − 𝛼
2
)
̃
𝑏
∗
𝑚
1−𝛼
2

+ (𝛼 + 𝛽)
̃
𝑑
∗ 𝑒
∗
𝑚

1 + 𝑒
∗
𝑚

𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

+ 𝛼
2
𝑐
∗

𝑒
∗
𝑚

1 + 𝑒
∗
𝑚

(1 + 𝑒
∗
𝑚)
−𝛼

]}

=

1

𝛼

𝑚
𝛼−1

× {[𝛼
2
(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

1/𝛼

+ (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× ( (1 − 𝛼
2
)
̃
𝑏
∗
𝑚
1−𝛼
2

+ (𝛼 + 𝛽)
̃
𝑑
∗ 𝑒
∗
𝑚

1 + 𝑒
∗
𝑚

𝑚
1−𝛼−𝛽−𝛼

2
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× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)]

− [𝛼
2
𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝛼

− 𝛼
2
𝑐
∗

𝑒
∗
𝑚

1 + 𝑒
∗
𝑚

(1 + 𝑒
∗
𝑚)
−𝛼

]}

=

1

𝛼

𝑚
𝛼−1

× {(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× [𝛼
2
(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

+ ( (1 − 𝛼
2
)
̃
𝑏
∗
𝑚
1−𝛼
2

+ (𝛼 + 𝛽)
̃
𝑑
∗ 𝑒
∗
𝑚

1 + 𝑒
∗
𝑚

𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)]

− [𝛼
2
𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝛼

× (1 −

𝑒
∗
𝑚

1 + 𝑒
∗
𝑚

)]}

=

1

𝛼

𝑚
𝛼−1

× { (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× [(𝛼
2̃
𝑏
∗
𝑚
1−𝛼
2

+ (1 − 𝛼
2
)
̃
𝑏
∗
𝑚
1−𝛼
2

)

+ (𝛼
2 ̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
𝛼+𝛽

+ (𝛼 + 𝛽)
̃
𝑑
∗ 𝑒
∗
𝑚

1 + 𝑒
∗
𝑚

𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

+ (1 − 𝛼 − 𝛽 − 𝛼
2
)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)]

− 𝛼
2
𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝛼 1

1 + 𝑒
∗
𝑚

}

=

1

𝛼

𝑚
𝛼−1

× { (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× [
̃
𝑏
∗
𝑚
1−𝛼
2

+ (𝛼
2
+ (𝛼 + 𝛽)

𝑒
∗
𝑚

1 + 𝑒
∗
𝑚

+(1 − 𝛼 − 𝛽 − 𝛼
2
) )
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

]

− 𝛼
2
𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝛼 1

1 + 𝑒
∗
𝑚

}

=

1

𝛼

𝑚
𝛼−1

× { (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× [
̃
𝑏
∗
𝑚
1−𝛼
2

+ (1 −

𝛼 + 𝛽

1 + 𝑒
∗
𝑚

)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

]

− 𝛼
2
𝑐
∗
(1 + 𝑒

∗
𝑚)
−𝛼 1

1 + 𝑒
∗
𝑚

}

=

1

𝛼

𝑚
𝛼−1

(1 + 𝑒
∗
𝑚)
𝛼+1

× { (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2
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× (1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× [
̃
𝑏
∗
𝑚
1−𝛼
2

× (1 + 𝑒
∗
𝑚)
𝛼+1

+ (1 − 𝛼 − 𝛽 + 𝑒
∗
𝑚)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

× (1 + 𝑒
∗
𝑚)
2𝛼+𝛽

] − 𝛼
2
𝑐
∗
} .

(53)

Since the function

Φ (𝑚)

=: (
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× [
̃
𝑏
∗
𝑚
1−𝛼
2

(1 + 𝑒
∗
𝑚)
𝛼+1

+ (1 − 𝛼 − 𝛽 + 𝑒
∗
𝑚)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
2𝛼+𝛽

]

(54)

is increasing on 𝑚 ∈ [0, +∞) and Φ(0) = 0, and
lim
𝑚→+∞

Φ(𝑚) = +∞, the equation Φ(𝑚) = 𝛼2𝑐
∗
has a

unique solution 𝑚
0
∈ (0, +∞). Thus the function 𝐹 attains a

minimum at 𝑚 = 𝑚
0
, which provides a suitable 𝑚 satisfying

(51).

Theorem 7. Suppose that 0 < 𝛼, 𝛽 < 1, 1 − 𝛼 − 𝛼2 − 𝛽 > 0,
and there exist continuous and nonnegative functions 𝑏, 𝑐, 𝑑 on
[0, 1] such that 𝑏 ≥ 𝑐 ≻ 0 and

𝑐 (𝑡) 𝑥
−𝛼
≤ 𝑝 (𝑡) 𝑥

−𝛼
+ 𝑞 (𝑡) 𝑥

𝛽
≤ 𝑏 (𝑡) 𝑥

−𝛼
+ 𝑑 (𝑡) 𝑥

𝛽
,

𝑡 ∈ [0, 1] , 𝑥 ∈ (0, +∞) .

(55)

If 𝑒
∗
< 0 < 𝑒

∗ and

𝑒
∗
≥ 𝑚
𝛼

0
[(
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
(1 + 𝑒

∗
𝑚
0
)
𝛼+𝛽

)

1/𝛼

− 𝑐
∗
(1 + 𝑒

∗
𝑚
0
)
−𝛼

] ,

(56)

where𝑚
0
is the unique positive solution of the equation

(
̃
𝑏
∗
𝑚
1−𝛼
2

+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
𝛼+𝛽

)

(1/𝛼)−1

× [
̃
𝑏
∗
𝑚
1−𝛼
2

(1 + 𝑒
∗
𝑚)
𝛼+1

+ (1 − 𝛼 − 𝛽 + 𝑒
∗
𝑚)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

(1 + 𝑒
∗
𝑚)
2𝛼+𝛽

]

= 𝛼
2
𝑐
∗
,

(57)

then (4) has at least one positive periodic solution.

Proof. By similar discussion inTheorem 5, we have that con-
dition (H

1
) ofTheorem 3 is satisfied under the assumption in

this theorem. Set 𝑅 = (1/𝑚) + 𝑒∗. Assumption (56) shows

𝑒
∗
≥ [𝑚(

̃
𝑏
∗
+
̃
𝑑
∗
(

1 + 𝑒
∗
𝑚

𝑚

)

𝛼+𝛽

)]

1/𝛼

−

𝑐
∗
𝑚
𝛼

(1 + 𝑒
∗
𝑚)
𝛼
= (

̃
𝑏
∗
+
̃
𝑑
∗
𝑅
𝛼+𝛽

𝑅 − 𝑒
∗

)

1/𝛼

−

𝑐
∗

𝑅
𝛼
.

(58)

To verify that 𝑅 satisfies

𝑅 > 𝑅
−𝛼
(
̃
𝑏
∗
+ 𝑅
𝛼+𝛽 ̃
𝑑
∗
) + 𝑒
∗
, (59)

we note that, by (57), there holds

𝛼
2
𝑐
∗
≥ (
̃
𝑏
∗
𝑚
1−𝛼
2

0
)

(1/𝛼)−1

(
̃
𝑏
∗
𝑚
1−𝛼
2

0
) = (

̃
𝑏
∗
𝑚
1−𝛼
2

0
)

1/𝛼

, (60)

which leads to

𝑚
0
≤ (

𝛼
2
𝑐
∗

̃
𝑏
∗(1/𝛼)

)

𝛼/(1−𝛼
2
)

. (61)

Furthermore, we also have

𝛼
2
𝑐
∗
≥ (
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
(1 + 𝑒

∗
𝑚
0
)
𝛼+𝛽

)

(1/𝛼)−1

× [(1 − 𝛼 − 𝛽)
̃
𝑏
∗
𝑚
1−𝛼
2

0

+ (1 − 𝛼 − 𝛽)
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
(1 + 𝑒

∗
𝑚
0
)
𝛼+𝛽

]

= (1 − 𝛼 − 𝛽)

× (
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
(1 + 𝑒

∗
𝑚
0
)
𝛼+𝛽

)

1/𝛼

;

(62)

that is,

𝛼
2
𝑐
∗

(1 − 𝛼 − 𝛽)

≥ (
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
(1 + 𝑒

∗
𝑚
0
)
𝛼+𝛽

)

1/𝛼

.

(63)

Combining (61) with (63), we get

𝑚
𝛼+1

0
(
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
(1 + 𝑒

∗
𝑚
0
)
𝛼+𝛽

)

1/𝛼

< ((

𝛼
2
𝑐
∗

̃
𝑏
∗(1/𝛼)

)

𝛼/(1−𝛼
2
)

)

𝛼+1

𝛼
2
𝑐
∗

(1 − 𝛼 − 𝛽)

= (

𝛼
2
𝑐
∗

̃
𝑏
∗(1/𝛼)

)

𝛼/(1−𝛼)

𝛼
2
𝑐
∗

(1 − 𝛼 − 𝛽)

= 𝛼
2𝛼/(1−𝛼)

(

𝑐
∗

̃
𝑏
∗

)

𝛼/(1−𝛼)
𝛼
2

(1 − 𝛼 − 𝛽)

< 1 < 1 + 𝑒
∗
𝑚
0
.

(64)

Substituting 𝑅 = (1/𝑚) + 𝑒∗ into the above inequality, we get
(59), which completes the proof.
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5. Example

In this section, we apply the results established in this paper
to two second-order singular equations.

Example 1. Consider the periodic problem for a second-order
singular equation

𝑥

+ 𝑥 =

sin2 (2𝜋𝑡𝑥) + 1
𝑥
1/2

+ 𝑥
1/8
− 0.03. (65)

We will make use of Theorem 5 to show that this equation
has at least one positive solution. We first note that (65)
is nonresonant and the associated Green function 𝐺 is
nonnegative. In fact, we have

𝐺 (𝑡, 𝑠)

=

1

2 (1 − cos 1)
{

sin (𝑡 − 𝑠) + sin (1 − 𝑡 + 𝑠) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1;
sin (𝑠 − 𝑡) + sin (1 − 𝑠 + 𝑡) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(66)

Furthermore, there also holds ∫1
0
𝐺(𝑡, 𝑠)𝑑𝑠 = 1. In order to

verify the conditions in Theorem 5, we set for any 𝑡 ∈ [0, 1]
and any 𝑥 ∈ (0, +∞)

𝑎 (𝑡) = 1, 𝑒 (𝑡) = −0.03,

𝑓 (𝑡, 𝑥) =

sin2 (2𝜋𝑡𝑥) + 1
𝑥
1/2

+ 𝑥
1/8
,

𝑏 (𝑡) = 2, 𝑐 (𝑡) = 𝑑 (𝑡) = 1, 𝛼 =

1

2

, 𝛽 =

1

8

.

(67)

It is easy to see that there hold 1−𝛼−𝛼2 −𝛽 = (1/8) > 0 and,
for any 𝑡 ∈ [0, 1] and 𝑥 ∈ (0, +∞),

𝑐 (𝑡) 𝑥
−𝛼
< 𝑓 (𝑡, 𝑥) < 𝑏 (𝑡) 𝑥

−𝛼
+ 𝑑 (𝑡) 𝑥

𝛽
. (68)

To verify (29), we point out that

𝑐 (𝑡) =
̃
𝑑 (𝑡) =

1

2

̃
𝑏 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 = 1,

𝑒 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑒 (𝑠) 𝑑𝑠 = −0.03,

(69)

which lead to ̃𝑏∗ = 2, ̃𝑑∗ = 𝑐
∗
= 1, and 𝑒

∗
= 𝑒
∗
= −0.03. By

numerical calculation, we get the unique positive solution of
equation

(2𝑚
3/4
+ 𝑚
1/8
) (2𝑚

3/4
+

3

8

𝑚
1/8
) =

1

4

(70)

as𝑚
0
≐ 0.02123. Hence, we have the desired inequalities

𝑚
𝛼

0
[(
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
)

1/𝛼

− 𝑐
∗
]

= 𝑚
1/2

0
(2𝑚
3/4

0
+ 𝑚
1/8

0
) ≐ −0.03948 < 𝑒

∗
< 0.

(71)

Since all the conditions are satisfied, Theorem 5 guarantees
that (65) has a positive solution 𝑥 (see Figure 1, numerical
simulation for 𝑒(𝑡) = −0.03).

1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5

1

x


x

Figure 1: Numerical simulation for 𝑒(𝑡) = −0.03.

Example 2. Consider the periodic problem for a second-
order singular equation

𝑥

+ 𝑥 =

sin2 (2𝜋 (𝑡 + 𝑥)) + 1
𝑥
1/2

+ 𝑥
1/8

+ 0.03 (sin (2𝜋𝑡) −max {𝑝 (𝑡)}) ,
(72)

where

𝑝 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) sin (2𝜋𝑠) 𝑑𝑠 = (1 − cos 1)−1(4𝜋2 − 1)
−1

× [2𝜋 (1 − cos (2𝜋𝑡) cos (1 − 𝑡)) sin 𝑡

+ sin (2𝜋𝑡) (cos (1 − 𝑡) cos 𝑡 − 1)] .
(73)

In this example, we note that there hold

𝑎 (𝑡) = 1, 𝑒 (𝑡) = 0.03 (sin (2𝜋𝑡) −max {𝑝 (𝑡)}) ,

𝑓 (𝑡, 𝑥) =

sin2 (2𝜋 (𝑡 + 𝑥)) + 1
𝑥
1/2

+ 𝑥
1/8
,

𝑡 ∈ [0, 1] , 𝑥 ∈ (0, +∞) .

(74)

To meet the conditions in Theorem 7, we also set for any 𝑡 ∈
[0, 1] and any 𝑥 ∈ (0, +∞)

𝑏 (𝑡) = 2, 𝑐 (𝑡) = 𝑑 (𝑡) = 1, 𝛼 =

1

2

, 𝛽 =

1

8

.

(75)

It is clear that there hold 1 − 𝛼 − 𝛼2 − 𝛽 = (1/8) > 0 and, for
any 𝑡 ∈ [0, 1] and 𝑥 ∈ (0, +∞),

𝑐 (𝑡) 𝑥
−𝛼
< 𝑓 (𝑡, 𝑥) < 𝑏 (𝑡) 𝑥

−𝛼
+ 𝑑 (𝑡) 𝑥

𝛽
. (76)

By direct calculation, we have ̃𝑏∗ = 2, ̃𝑑∗ = 𝑐
∗
= 1, and

−𝑒
∗
= 𝑒
∗
= 0.015max {𝑝 (𝑡)} ≐ 0.0053706, (77)
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Figure 2: Numerical simulation for 𝑒(𝑡) = 0.03 × (sin(2𝜋𝑡) −
0.179025044320086).

which leads us to consider the equation

(2𝑚
3/4
+ 𝑚
1/8
(1 + 𝑒

∗
𝑚)
9/8

)

× (2𝑚
3/4
(1 + 𝑒

∗
𝑚)
𝛼+1

+ (

3

8

+ 𝑒
∗
𝑚)𝑚

1/8
(1 + 𝑒

∗
𝑚)
9/8

)

=

1

4

.

(78)

By numerical calculation, we get the unique positive solution
of the above equation as𝑚

0
= 0.017206. Thus, we get

𝑚
𝛼

0
[(
̃
𝑏
∗
𝑚
1−𝛼
2

0
+
̃
𝑑
∗
𝑚
1−𝛼−𝛽−𝛼

2

0
(1 + 𝑒

∗
𝑚
0
)
𝛼+𝛽

)

1/𝛼

− 𝑐
∗
(1 + 𝑒

∗
𝑚
0
)
−𝛼

]

= 𝑚
1/2

0
[(2𝑚

3/4

0
+ 𝑚
1/8

0
(1 + 𝑒

∗
𝑚
0
)
5/8

)

2

− (1 + 𝑒
∗
𝑚
0
)
−1/2

] ≐ −0.06804 < 𝑒
∗
.

(79)

Together with the fact that 𝑒
∗
< 0 < 𝑒

∗, the above inequality
shows that all the conditions of Theorem 7 are satisfied.
Consequently, Theorem 7 guarantees that (72) has a positive
solution 𝑥 (see Figure 2, numerical simulation).
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[7] A. Fonda, R. Manásevich, and F. Zanolin, “Subharmonic
solutions for some second order di fferential equations with
singularities,” SIAM Journal on Mathematical Analysis, vol. 24,
no. 5, pp. 1294–1311, 1993.

[8] D. Franco and J. R. L. Webb, “Collisionless orbits of singular
and non singular dynamical systems,” Discrete and Continuous
Dynamical Systems. Series A, vol. 15, no. 3, pp. 747–757, 2006.

[9] W. B. Gordon, “Conservative dynamical systems involving
strong forces,” Transactions of the American Mathematical
Society, vol. 204, pp. 113–135, 1975.

[10] P. Habets and L. Sanchez, “Periodic solutions of some Liénard
equations with singularities,” Proceedings of the AmericanMath-
ematical Society, vol. 109, no. 4, pp. 1035–1044, 1990.

[11] D. Jiang, J. Chu, D. O’Regan, and R. P. Agarwal, “Multiple posi-
tive solutions to superlinear periodic boundary value problems
with repulsive singular forces,” Journal ofMathematical Analysis
and Applications, vol. 286, no. 2, pp. 563–576, 2003.

[12] D. Jiang, J. Chu, andM.Zhang, “Multiplicity of positive periodic
solutions to superlinear repulsive singular equations,” Journal of
Differential Equations, vol. 211, no. 2, pp. 282–302, 2005.

[13] A. C. Lazer and S. Solimini, “On periodic solutions of nonlinear
differential equations with singularities,” Proceedings of the
American Mathematical Society, vol. 99, no. 1, pp. 109–114, 1987.

[14] Z. Cao and D. Jiang, “Periodic solutions of second order
singular coupled systems,” Nonlinear Analysis. Theory, Methods
& Applications. An International Multidisciplinary Journal A:
Theory and Methods, vol. 71, no. 9, pp. 3661–3667, 2009.

[15] I. Rachůnková, M. Tvrdý, and I. Vrkoč, “Existence of non-
negative and nonpositive solutions for second order periodic
boundary value problems,” Journal of Differential Equations, vol.
176, no. 2, pp. 445–469, 2001.

[16] P. J. Torres, “Existence of one-signed periodic solutions of some
second-order differential equations via a Krasnoselskii fixed



12 Journal of Applied Mathematics

point theorem,” Journal of Differential Equations, vol. 190, no.
2, pp. 643–662, 2003.

[17] J. Chu, X. Lin, D. Jiang, D. O’Regan, and R. P. Agarwal,
“Multiplicity of positive periodic solutions to second order
differential equations,” Bulletin of the Australian Mathematical
Society, vol. 73, no. 2, pp. 175–182, 2006.

[18] P. Yan andM.Zhang, “Higher order non-resonance for differen-
tial equations with singularities,” Mathematical Methods in the
Applied Sciences, vol. 26, no. 12, pp. 1067–1074, 2003.

[19] M. Zhang, “A relationship between the periodic and the Dirich-
let BVPs of singular differential equations,” Proceedings of the
Royal Society of Edinburgh A. Mathematics, vol. 128, no. 5, pp.
1099–1114, 1998.

[20] F. Zhu, L. Liu, and Y. Wu, “Positive solutions for systems of a
nonlinear fourth-order singular semipositone boundary value
problems,” Applied Mathematics and Computation, vol. 216, no.
2, pp. 448–457, 2010.

[21] M. Yao, A. Zhao, and J. Yan, “Periodic boundary value problems
of second-order impulsive differential equations,” Nonlinear
Analysis. Theory, Methods & Applications. An International
Multidisciplinary Journal A: Theory and Methods, vol. 70, no. 1,
pp. 262–273, 2009.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


