11 research outputs found
AGBL4 promotes malignant progression of glioblastoma via modulation of MMP-1 and inflammatory pathways
IntroductionGlioblastoma multiforme (GBM), the most common primary malignant brain tumor, is notorious for its aggressive growth and dismal prognosis. This study aimed to elucidate the molecular underpinnings of GBM, particularly focusing on the role of AGBL4 and its connection to inflammatory pathways, to discover viable therapeutic targets.MethodsSingle-cell sequencing was utilized to examine the expression levels of AGBL4 and functional assays were performed to assess the effects of AGBL4 modulation.ResultsOur findings identified the significant upregulation of AGBL4 in GBM, which correlated with adverse clinical outcomes. Functional assays demonstrated that AGBL4 knockdown inhibited GBM cell proliferation, migration, and invasion and influenced inflammatory response pathways, while AGBL4 overexpression promoted these activities. Further investigation revealed that AGBL4 exerted its oncogenic effects through modulation of MMP-1, establishing a novel regulatory axis critical for GBM progression and inflammation.DiscussionBoth AGBL4 and MMP-1 may be pivotal molecular targets, offering new avenues for targeted therapy in GBM management
The Role of Extracellular Vesicles: An Epigenetic View of the Cancer Microenvironment
Exosomes, microvesicles, and other extracellular vesicles are released by many cell types, including cancer cells and cancer-related immune cells. Extracellular vesicles can directly or indirectly facilitate the transfer of bioinformation to recipient cells or to the extracellular environment. In cancer, exosomes have been implicated in tumor initiation, proliferation, and metastasis. Extracellular vesicles can transmit proteins and nucleic acids that participate in DNA methylation, histone modification, and posttranscriptional regulation of RNA. Factors transmitted by extracellular vesicles reflect the donor cell status, and extracellular vesicles derived from tumor cells may be also responsible for altering expression of tumor promoting and tumor suppressing genes in recipient cells. Thus, circulating extracellular vesicles may act as biomarkers of cancer, and detection of these biomarkers may be applied to diagnosis or assessment of prognosis in patients with cancer
A feature selection framework for video semantic recognition via integrated cross-media analysis and embedded learning
Abstract Video data are usually represented by high dimensional features. The performance of video semantic recognition, however, may be deteriorated due to the irrelevant and redundant components included into the high dimensional representations. To improve the performance of video semantic recognition, we propose a new feature selection framework in this paper and validate it through applications of video semantic recognition. Two issues are considered in our framework. First, while those labeled videos are precious, their relevant labeled images are abundant and available in the WEB. Therefore, a supervised transfer learning is proposed to achieve the cross-media analysis, in which the discriminative features are selected by evaluating feature’s correlation with the classes of videos and relevant images. Second, the labeled videos are normally rare in real-world applications. In our framework, therefore, an unsupervised subspace learning is added to retain the most valuable information and eliminate the feature redundancies by leveraging both labeled and unlabeled videos. The cross-media analysis and embedded learning are simultaneously learned in a joint framework, which enables our algorithm to utilize the common knowledge of cross-media analysis and embedded learning as supplementary information to facilitate decision making. An efficient iterative algorithm is proposed to optimize the proposed learning-based feature selection, in which convergence is guaranteed. Experiments on different databases have demonstrated the effectiveness of the proposed algorithm
Research on the Enhancement of the Separation Efficiency for Discrete Phases Based on Mini Hydrocyclone
The economic and efficient treatment of mixed media in offshore produced fluids is of great significance to oilfield production. Due to the small space and limited load-bearing capacity of offshore platforms, some mature multiphase media separation processes in onshore oilfields are difficult to apply. Therefore, high-efficiency processing methods with small-occupied space are required. Mini hydrocyclones (MHCs) are a potential separation method due to their simple structure, small footprint, and high separation efficiency (especially for fine particles or droplets). However, for discrete phases with different densities and sizes, the enhancement rule of the separation efficiency of MHCs is not yet clear. In this paper, numerical simulation methods were used to study the separation performance of hydrocyclones with different main diameters (including conventional hydrocyclones (CHCs) and MHCs) for discrete phases with different densities and particle sizes. Results show that MHC has the optimal enhancement range for oil-water separation when oil-droplet sizes are 60-300 mu m, while the optimal enhancement range for silica particle and water separation is 10-40 mu m. For other droplet/particle size ranges, the efficiency enhancement effect of MHC is not obvious compared to conventional hydrocyclones. By calculating the radial force of particles in MHC and CHC, the reasons for the enhanced efficiency of MHC are theoretically analyzed. The pressure drop of MHC is higher than CHC under the same feed velocity, which can be improved by connecting CHC with MHC. Additionally, the fluid velocity test experiments based on particle image velocimetry (PIV) were carried out to verify the accuracy of the numerical simulations. This study clarified the scope of application of MHCs to different discrete phase types, in order to provide a basis for the precise application of MHCs
Research on the Enhancement of the Separation Efficiency for Discrete Phases Based on Mini Hydrocyclone
The economic and efficient treatment of mixed media in offshore produced fluids is of great significance to oilfield production. Due to the small space and limited load-bearing capacity of offshore platforms, some mature multiphase media separation processes in onshore oilfields are difficult to apply. Therefore, high-efficiency processing methods with small-occupied space are required. Mini hydrocyclones (MHCs) are a potential separation method due to their simple structure, small footprint, and high separation efficiency (especially for fine particles or droplets). However, for discrete phases with different densities and sizes, the enhancement rule of the separation efficiency of MHCs is not yet clear. In this paper, numerical simulation methods were used to study the separation performance of hydrocyclones with different main diameters (including conventional hydrocyclones (CHCs) and MHCs) for discrete phases with different densities and particle sizes. Results show that MHC has the optimal enhancement range for oil-water separation when oil-droplet sizes are 60-300 mu m, while the optimal enhancement range for silica particle and water separation is 10-40 mu m. For other droplet/particle size ranges, the efficiency enhancement effect of MHC is not obvious compared to conventional hydrocyclones. By calculating the radial force of particles in MHC and CHC, the reasons for the enhanced efficiency of MHC are theoretically analyzed. The pressure drop of MHC is higher than CHC under the same feed velocity, which can be improved by connecting CHC with MHC. Additionally, the fluid velocity test experiments based on particle image velocimetry (PIV) were carried out to verify the accuracy of the numerical simulations. This study clarified the scope of application of MHCs to different discrete phase types, in order to provide a basis for the precise application of MHCs
Research on the Enhancement of the Separation Efficiency for Discrete Phases Based on Mini Hydrocyclone
The economic and efficient treatment of mixed media in offshore produced fluids is of great significance to oilfield production. Due to the small space and limited load-bearing capacity of offshore platforms, some mature multiphase media separation processes in onshore oilfields are difficult to apply. Therefore, high-efficiency processing methods with small-occupied space are required. Mini hydrocyclones (MHCs) are a potential separation method due to their simple structure, small footprint, and high separation efficiency (especially for fine particles or droplets). However, for discrete phases with different densities and sizes, the enhancement rule of the separation efficiency of MHCs is not yet clear. In this paper, numerical simulation methods were used to study the separation performance of hydrocyclones with different main diameters (including conventional hydrocyclones (CHCs) and MHCs) for discrete phases with different densities and particle sizes. Results show that MHC has the optimal enhancement range for oil–water separation when oil-droplet sizes are 60–300 μm, while the optimal enhancement range for silica particle and water separation is 10–40 μm. For other droplet/particle size ranges, the efficiency enhancement effect of MHC is not obvious compared to conventional hydrocyclones. By calculating the radial force of particles in MHC and CHC, the reasons for the enhanced efficiency of MHC are theoretically analyzed. The pressure drop of MHC is higher than CHC under the same feed velocity, which can be improved by connecting CHC with MHC. Additionally, the fluid velocity test experiments based on particle image velocimetry (PIV) were carried out to verify the accuracy of the numerical simulations. This study clarified the scope of application of MHCs to different discrete phase types, in order to provide a basis for the precise application of MHCs