123 research outputs found
Fingerprinting Sources of the Sediments Deposited in the Riparian Zone of the Ruxi Tributary Channel of the Three Gorges Reservoir (China)
The riparian zone of the Three Gorges Reservoir serves as a critical transitional zone located between the aquatic and surrounding terrestrial environments. The periodic anti-seasonal alternation of wet and dry periods results in an intensive exchange of substance within the riparian zone. The discrimination of the sources of the sediments deposited within the riparian zone is of fundamental importance for the evaluation of the soil pollution and associated environmental impacts and for the protection of the water quality in the reservoir. In this study, a composite fingerprinting technique has been applied to apportion the sediment sources for the riparian zone with different elevations, ranging between 145—155, 155–165, and 165–175 m in a typical tributary channel. From a sediment perspective, the sediments suspended from the Yangtze mainstream represent the primary sources of the riparian deposits. From a contamination perspective, the sediment input from the Ruxi tributary channel represents an important source of pollution for the riparian environment. More effective sediment and sediment-associated contaminant control plans are needed to reduce the potential environmental problems of the riparian zone
The arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis
Cell water permeability and cell wall properties are critical to survival of plant cells during freezing, however the underlying molecular mechanisms remain elusive. Here, we report that a specifically cold-induced nuclear protein, Tolerant to Chilling and Freezing 1 (TCF1), interacts with histones H3 and H4 and associates with chromatin containing a target gene, BLUE-COPPER-BINDING PROTEIN (BCB), encoding a glycosylphosphatidylinositol-anchored protein that regulates lignin biosynthesis. Loss of TCF1 function leads to reduced BCB transcription through affecting H3K4me2 and H3K27me3 levels within the BCB gene, resulting in reduced lignin content and enhanced freezing tolerance. Furthermore, plants with knocked-down BCB expression (amiRNA-BCB) under cold acclimation had reduced lignin accumulation and increased freezing tolerance. The pal1pal2 double mutant (lignin content reduced by 30% compared with WT) also showed the freezing tolerant phenotype, and TCF1 and BCB act upstream of PALs to regulate lignin content. In addition, TCF1 acts independently of the CBF (C-repeat binding factor) pathway. Our findings delineate a novel molecular pathway linking the TCF1-mediated cold-specific transcriptional program to lignin biosynthesis, thus achieving cell wall remodeling with increased freezing tolerance
New insights from GWAS for the cleft palate among han Chinese population
Genome wide association studies (GWAS) already have identified tens of susceptible loci for nonsyndromic cleft lip with or without cleft palate (NSCL/P). However, whether these loci associated with nonsyndromic cleft palate only (NSCPO) remains unknown. In this study, we replicated 38 SNPs (Single nucleotide polymorphisms) which has the most significant p values in published GWASs, genotyping by using SNPscan among 144 NSCPO trios from Western Han Chinese. We performed the transmission disequilibrium test (TDT) on individual SNPs and gene-gene (GxG) interaction analyses on the family data; Parent-of-Origin effects were assessed by separately considering transmissions from heterozygous fathers versus heterozygous mothers to affected offspring. Allelic TDT results showed that T allele at rs742071 (PAX7) (p=0.025, ORtransmission=3.00, 95%CI: 1.09-8.25) and G allele at rs2485893 (10kb 3? of SYT14) were associated with NSCPO (p=0.0036, ORtransmission= 0.60, 95%CI: 0.42-0.85). Genotypic TDT based on 3 pseudo controls further confirmed that rs742071 (p-value=0.03, ORtransmission=3.00, 95%CI: 1.09-8.25) and rs2485893 were associated with NSCPO under additive model (p-value= 0.02, ORtransmission= 0.66, 95%CI: 0.47-0.92). Genotypic TDT for epistatic interactions showed that rs4844913 (37kb 3? of DIEXF) interacted with rs11119388 (SYT14) (p-value=1.80E-08) and rs6072081 (53kb 3? of MAFB) interacted with rs6102085 (33kb 3? of MAFB) (p-value=3.60E-04) for NSCPO, suggesting they may act in the same pathway in the etiology of NSCPO. In this study, we found that rs742071 and rs2485893 were associated NSCPO from Han Chinese population; also, interactions of rs4844913:rs11119388 and rs6072081:rs6102085 for NSCPO were identified, gene-gene interactions have been proposed as a potential source of the remaining heritability, these findings provided new insights of the previous GWAS
BMP7 Gene involved in nonsyndromic orofacial clefts in Western han Chinese
Background: Nonsyndromic orofacial clefts (NSOCs) are the most common craniofacial birth defects with complex etiology in which multiple genes and environmental exposures are involved. Bone morphogenetic protein 7
(BMP7), as a member of the transforming growth factor-beta (TGF-beta) superfamily, has been shown to play
crucial roles in palate and other orofacial ectodermal appendages development in animal models.
Material and Methods: This study was designed to investigate the possible associations between
BMP7
gene
and the NSOCs (221 case-parent trios) in Western Han Chinese. Five tagSNPs at BMP7, rs12438, rs6099486,
rs6127973, rs230188 and rs6025469 were picked and tried to cover the entire gene. In order to identify the contribution of
BMP7
gene to the etiology of NSOCs, we performed several statistical analysis from different aspects
including transmission disequilibrium test (TDT), pairwise linkage disequilibrium (LD), parent-of-origin effect
and Chi-squared/Fisher’s exact tests.
Results: Rs6127973 G allele and G/G homozygotes were over-transmitted for both NSOCs (
P
=0.005 and
P
=0.011,
respectively) and NSCL/P (
P
=0.0061 and
P
=0.011, respectively), rs6127973 G allele was also paternally over-
transmitted for both NSOCs (
P
=0.0061) and NSCL/P (
P
=0.011).
Conclusions: This study suggested that rs6127973 may be a risk factor of being NSOCs and confirmed the role
of
BMP7
gene in orofacial deformity from Western Han Chinese, which will also supply scientific evidence for
future research and genetic counseling
Genotypic and Environmental Effects on the Volatile Chemotype of Valeriana jatamansi Jones
Valeriana jatamansi Jones is an aromatic medicinal herb and important alternative to V. officinalis, which is utilized for medicinal purposes in China and India and also as spices in India. Bioactive ingredients of V. jatamansi vary in different regions. However, no information is currently available on influence of genotype and environmental factors in the volatile compounds, especially when germplasms and planting locations need to be selected. Based on the results of SNP and volatile constituents from GC-MS analysis, this study found various genotypes and chemotypes of V. jatamansi for wild plants from seven regions in China and common-garden samples; correlations between genotype and chemotype were revealed for the plants. Two distinct populations (PX, FY) were distinguishable from five others (GJ, YL, SY, DD, DY) according to their genotypes and volatile profiles, the consistency of which was observed showing that genotype could significantly influence chemotype. Wild populations and common-garden samples were also separated in their volatile profiles, demonstrating that environmental factors strongly affected their chemotypes. Compounds contributing to the discrimination were identified as discriminatory compounds. This investigation has explored and provided essential information concerning the correlation between genotype and chemotype as well as environmental factors and chemotype of V. jatamansi in some regions of China. Feasible plantation and conservation strategies of V. jatamansi could be further explored based on these results
The Circadian Syndrome Is a Significant and Stronger Predictor for Cardiovascular Disease than the Metabolic Syndrome-The NHANES Survey during 2005-2016.
The study aimed to compare the predictive value of the Circadian Syndrome (CircS) and Metabolic Syndrome (MetS) for cardiovascular disease (CVD). We used data of 12,156 adults aged ≥20 years who attended National Health and Nutrition Examination Survey (NHANES) 2005-2016. Mortality was obtained from the registry updated to 2019. The CircS was defined based on components of the MetS, in addition to short sleep and depression. Both the MetS and CircS were directly associated with self-reported history of CVD. The odds ratios for prevalent CVD associated with the CircS and MetS, respectively, were 2.92 (95% confidence interval (CI) 2.21-3.86) and 3.20 (2.38-4.30) in men, and 3.27 (2.34-4.59) and 3.04 (2.15-4.30) in women. The CircS had a better predictive power for prevalent CVD than that of MetS, as indicated by the higher positive predictive value (PPV); in men, the PPV for prevalent CVD with CircS was 23.1% and with MetS 20.9%, and in women these were 17.9% vs. 16.4%, respectively. However, the PPV of the CircS and MetS did not differ for the CVD mortality prediction. Women with CircS alone had a higher risk for both prevalent CVD and CVD mortality than those with MetS alone. In conclusion, the CircS is a significant and stronger predictor for CVD than the MetS in US adults
Lu-177-PSMA dosimetry for kidneys and tumors based on SPECT images at two imaging time points
BackgroundPersonalized dosimetry for Lu-177-PSMA treatment requires multiple-time-point SPECT/CT scans to calculate time-integrated activity (TIA). This study evaluates two-time-point (TTP) methods for TIA calculation for kidneys and tumors.MethodsA total of 18 patients treated with 3.7-7.4 GBq Lu-177 PSMA-617 were analyzed retrospectively, including 18 sets of left and right kidneys, as well as 45 tumors. Four quantitative SPECT/CT (4TP) were acquired at 2 h, 20 h, 40 h, 60 h (n = 11), or 200 h (n = 7) after treatment, and they were fit bi-exponentially as reference. The TTP method was fitted by a mono-exponential washout function using two selected imaging time points for kidneys. For tumors, one uptake and one washout phase were modeled, assuming linear (type I) and same (type II) uptake phase between 0 h to the first time point and mono-exponential washout thereafter. Two single-time-point (STP) methods were also implemented for comparison. TIA calculated by TTP and STP methods were compared with reference to the 4TP TIA.ResultsFor the kidneys, the TTP methods using 20 h-60 h and 40 h-200 h had smaller mean absolute errors of 8.05 ± 6.05% and 4.95 ± 3.98%, respectively, as compared to other combinations of time points and STP methods. For tumors, the type I and type II TTP methods using 20h−60 h and 40–200 h had smaller mean absolute errors of 6.14 ± 5.19% and 12.22 ± 4.44%, and 8.31 ± 7.16% and 4.48 ± 7.10%, respectively, as compared to other TTP and STP methods.ConclusionThe TTP methods based on later imaging time demonstrated fewer errors than the STP methods in kidney and tumor TIA. Imaging at 20 h−60 h and 40 h−200 h could simplify the dosimetry procedures with fewer TIA estimation errors
Suitability evaluation of underground space development in coal mining cities in Henan province
This study proposes to evaluate the suitability of underground space development and utilization in coal mining cities, with the aim to promote reasonable utilization of underground space left behind after the closure of coal mines and avoid resource waste. Specifically, it takes typical coal mining cities in Henan province(Zhengzhou, Pingdingshan, Sanmenxia, and Luoyang)with spatial resources exceeding 10000 m3 as examples for analysis, with the Analytic Hierarchy Process adopted to establish an evaluation system for the suitability of underground space development and utilization in coal mining cities. The evaluation system includes five major categories: safety factor, stability factor, spatial resource quantity, spatial environmental factor, and economic factor, coupled with 20 corresponding secondary indicators. Based on the aforementioned evaluation system and expert scoring method, the suitability for development of four typical coal mining cities in Henan province was ranked in a descending order of scores: Zhengzhou scored 25.59, Pingdingshan 23.21, Sanmenxia 8.86, and Luoyang 8.56. By conducting cross comparisons between cities, this study provides reference for the suitability evaluation of underground space in various coal mining cities both within Henan province and across the country
Concentrations and Stoichiometric Characteristics of C, N, and P in Purple Soil of Agricultural Land in the Three Gorges Reservoir Region, China
Soil stoichiometry is an essential tool for understanding soil nutrient balance and cycling. Previous studies have recognized that some relationships were observed between particle size and carbon and nitrogen parameters. This study attempted to evaluate nutrient element concentrations and their stoichiometric ratios of surface soil (0–10 cm) under different land use types (forest, sloping arable land, paddy fields, and orchards). and different particle sizes (<32 µm, <63 µm, and <125 µm) from a small typical hilly catchment (0.35 km2) in the Three Gorges Reservoir Region of China. The contents of soil organic carbon (SOC), total nitrogen (TN). and total phosphorus (TP) were measured, and the ratios of C:N, C:P, N:P were calculated. The results indicated that land use type and soil particle size have diverse impacts on the studied indexes (SOC, TN, TP, C:N, C:P, and N:P). Six indexes were significantly affected by land use type (p < 0.01), while only C:N ratio was statistically influenced by soil particle size (p < 0.05). Furthermore, several significant differences of studied parameters of four land use types grouped within three particle sizes were found. The concentrations of SOC (12.34~13.46 g kg−1), TN (1.27~1.59 g kg−1), and TP (0.71~0.92 g kg−1) in the study site were lower than the national average values of China. Moreover, the productivity in the study area was mainly limited by TN concentration. Additionally, the concentration of TP decreased obviously with the increase in particle size. Furthermore, various coupling relationships were validated by linear and nonlinear fitting among different indexes. At the small catchment scale, take forest as a reference, human activities have significant impact on C-N-P stoichiometry (p < 0.05). Especially, tillage may reduce SOC and TN contents, leading to a decline in soil quality. Overall, our findings can provide a basis for rational utilization and sustainable development of land resources
- …