125 research outputs found

    Motor Noise and Vibration Test Research

    Get PDF
    Some factors, such as friction, vibration, and so on, can result in the fault and abnormal noise in the motor. Based on the detection and analysis of noise and vibration, we can identify and eliminate the faults of the motor. This is helpful not only to ensure the completion of production tasks, but also to prevent accidents. In this paper, we briefly introduce the motor noise generation principle. A laptop computer and LabVIEW software are used to design the experiment system to detect and analysis the noise and vibration of motor. External microphone and computer with sound card constitute noise detection system hardware. Vibration sensor and the data acquisition card constitute vibration detection system hardware. LabVIEW software combined with FFT analysis is used to realize the noise signal acquisition, recording and spectral analysis. Detecting and analyzing the noise of the permanent magnet DC motor and three-phase asynchronous motor proves that the motor noise and vibration detecting experimental platform is fully meet the requirements of motor test and research. This detection and analysis system has a good man-machine interface and strong operability

    Molecular Dynamic Simulation to Explore the Molecular Basis of Btk-PH Domain Interaction with Ins(1,3,4,5)P4

    Get PDF
    Bruton’s tyrosine kinase contains a pleckstrin homology domain, and it specifically binds inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), which is involved in the maturation of B cells. In this paper, we studied 12 systems including the wild type and 11 mutants, K12R, S14F, K19E, R28C/H, E41K, L11P, F25S, Y40N, and K12R-R28C/H, to investigate any change in the ligand binding site of each mutant. Molecular dynamics simulations combined with the method of molecular mechanics/Poisson-Boltzmann solvent-accessible surface area have been applied to the twelve systems, and reasonable mutant structures and their binding free energies have been obtained as criteria in the final classification. As a result, five structures, K12R, K19E, R28C/H, and E41K mutants, were classified as β€œfunctional mutations,” whereas L11P, S14F, F25S, and Y40N were grouped into β€œfolding mutations.” This rigorous study of the binding affinity of each of the mutants and their classification provides some new insights into the biological function of the Btk-PH domain and related mutation-causing diseases

    Catalytic Mechanism Investigation of Lysine-Specific Demethylase 1 (LSD1): A Computational Study

    Get PDF
    Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a flavin-dependent amine oxidase which specifically demethylates mono- or dimethylated H3K4 and H3K9 via a redox process. It participates in a broad spectrum of biological processes and is of high importance in cell proliferation, adipogenesis, spermatogenesis, chromosome segregation and embryonic development. To date, as a potential drug target for discovering anti-tumor drugs, the medical significance of LSD1 has been greatly appreciated. However, the catalytic mechanism for the rate-limiting reductive half-reaction in demethylation remains controversial. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations, the catalytic mechanism of dimethylated H3K4 demethylation by LSD1 was characterized in details. The three-dimensional (3D) model of the complex was composed of LSD1, CoREST, and histone substrate. A 30-ns MD simulation of the model highlights the pivotal role of the conserved Tyr761 and lysine-water-flavin motif in properly orienting flavin adenine dinucleotide (FAD) with respect to substrate. The synergy of the two factors effectively stabilizes the catalytic environment and facilitated the demethylation reaction. On the basis of the reasonable consistence between simulation results and available mutagenesis data, QM/MM strategy was further employed to probe the catalytic mechanism of the reductive half-reaction in demethylation. The characteristics of the demethylation pathway determined by the potential energy surface and charge distribution analysis indicates that this reaction belongs to the direct hydride transfer mechanism. Our study provides insights into the LSD1 mechanism of reductive half-reaction in demethylation and has important implications for the discovery of regulators against LSD1 enzymes

    Geographic distribution of C4 species and its phylogenetic structure across China

    Get PDF
    Over the past fifty years, the distribution patterns of C4 species, across large spatial scales, are largely ignored. Here, we endeavored to examine patterns in the taxonomic and phylogenetic diversity of species with C4 photosynthetic pathways across the broad spatial extent of China and relate those to climatic gradients. We built a database of all plants with the C4 photosynthetic pathway in China. We analyzed the geographic distributions, taxonomic diversity, phylogenetic diversity, and phylogenetic structure of all C4 species, as well as the three families with the most C4 species (Poaceae, Amaranthaceae and Cyperaceae), and compared their values along temperature and precipitation gradients at two scalesβ€”the level of the province and at the 100 x 100 km grid cell. We found 644 C4 plants (belonging to 23 families 165 genera) in China, with Poaceae (57%), Amaranthaceae (17%), Cyperaceae (13%) accounting for the majority of species. Standardized effect size values of phylogenetic distances were negative overall, indicating that C4 species showed a phylogenetic clustering pattern. Southern China had the highest species richness and the highest degree of phylogenetic clustering. C4 tended to be more phylogenetically over-dispersed in regions with colder and/or drier climates, but more clustered in warmer and/or wetter climates. Patterns within individual families were more nuanced. The distribution of C4 species and its phylogenetic structure across China was constrained by temperature and precipitation. C4 species showed a phylogenetic clustering pattern across China, while different families showed more nuanced responses to climate variation, suggesting a role for evolutionary history

    Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel combinatorial anti-cancer targets

    Get PDF
    The connection between inflammation and tumourigenesis has been well established. However, the detailed molecular mechanism underlying inflammation-associated tumourigenesis remains unknown because this process involves a complex interplay between immune microenvironments and epithelial cells. To obtain a more systematic understanding of inflammation-associated tumourigenesis as well as to identify novel therapeutic approaches, we constructed a knowledge-based network describing the development of colitis-associated colon cancer (CAC) by integrating the extracellular microenvironment and intracellular signalling pathways. Dynamic simulations of the CAC network revealed a core network module, including P53, MDM2, and AKT, that may govern the malignant transformation of colon epithelial cells in a pro-tumor inflammatory microenvironment. Furthermore, in silico mutation studies and experimental validations led to a novel finding that concurrently targeting ceramide and PI3K/AKT pathway by chemical probes or marketed drugs achieves synergistic anti-cancer effects. Overall, our network model can guide further mechanistic studies on CAC and provide new insights into the design of combinatorial cancer therapies in a rational manner

    Molecular Basis of NDM-1, a New Antibiotic Resistance Determinant

    Get PDF
    The New Delhi Metallo-Ξ²-lactamase (NDM-1) was first reported in 2009 in a Swedish patient. A recent study reported that Klebsiella pneumonia NDM-1 positive strain or Escherichia coli NDM-1 positive strain was highly resistant to all antibiotics tested except tigecycline and colistin. These can no longer be relied on to treat infections and therefore, NDM-1 now becomes potentially a major global health threat

    Investigation of the Acetylation Mechanism by GCN5 Histone Acetyltransferase

    Get PDF
    The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT) proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved. However, as a fundamental issue, the structure of hGCN5/AcCoA/pH3 remains elusive. Although biological experiments have proved that GCN5 mediates the acetylation process through the sequential mechanism pathway, a dynamic view of the catalytic process and the molecular basis for hGCN5/AcCoA/pH3 are still not available and none of theoretical studies has been reported to other related enzymes in HAT family. To explore the molecular basis for the catalytic mechanism, computational approaches including molecular modeling, molecular dynamic (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) simulation were carried out. The initial hGCN5/AcCoA/pH3 complex structure was modeled and a reasonable snapshot was extracted from the trajectory of a 20 ns MD simulation, with considering post-MD analysis and reported experimental results. Those residues playing crucial roles in binding affinity and acetylation reaction were comprehensively investigated. It demonstrated Glu80 acted as the general base for deprotonation of Lys171 from H3. Furthermore, the two-dimensional QM/MM potential energy surface was employed to study the sequential pathway acetylation mechanism. Energy barriers of addition-elimination reaction in acetylation obtained from QM/MM calculation indicated the point of the intermediate ternary complex. Our study may provide insights into the detailed mechanism for acetylation reaction of GCN5, and has important implications for the discovery of regulators against GCN5 enzymes and related HAT family enzymes

    Extensive Crosstalk between O-GlcNAcylation and Phosphorylation Regulates Akt Signaling

    Get PDF
    O-linked N-acetylglucosamine glycosylations (O-GlcNAc) and O-linked phosphorylations (O-phosphate), as two important types of post-translational modifications, often occur on the same protein and bear a reciprocal relationship. In addition to the well documented phosphorylations that control Akt activity, Akt also undergoes O-GlcNAcylation, but the interplay between these two modifications and the biological significance remain unclear, largely due to the technique challenges. Here, we applied a two-step analytic approach composed of the O-GlcNAc immunoenrichment and subsequent O-phosphate immunodetection. Such an easy method enabled us to visualize endogenous glycosylated and phosphorylated Akt subpopulations in parallel and observed the inhibitory effect of Akt O-GlcNAcylations on its phosphorylation. Further studies utilizing mass spectrometry and mutagenesis approaches showed that O-GlcNAcylations at Thr 305 and Thr 312 inhibited Akt phosphorylation at Thr 308 via disrupting the interaction between Akt and PDK1. The impaired Akt activation in turn resulted in the compromised biological functions of Akt, as evidenced by suppressed cell proliferation and migration capabilities. Together, this study revealed an extensive crosstalk between O-GlcNAcylations and phosphorylations of Akt and demonstrated O-GlcNAcylation as a new regulatory modification for Akt signaling
    • …
    corecore