27 research outputs found

    Broadband nonlinear optical response of monolayer MoSe2under ultrafast excitation

    Get PDF
    Due to their strong light-matter interaction, monolayer transition metal dichalcogenides (TMDs) have proven to be promising candidates for nonlinear optics and optoelectronics. Here, we characterize the nonlinear absorption of chemical vapour deposition (CVD)-grown monolayer MoSe2in the 720-810 nm wavelength range. Surprisingly, despite the presence of strong exciton resonances, monolayer MoSe2exhibits a uniform modulation depth of ∼80 ± 3% and a saturation intensity of ∼2.5 ± 0.4 MW/cm2. In addition, pump-probe spectroscopy is performed to confirm the saturable absorption and reveal the photocarrier relaxation dynamics over hundreds of picoseconds. Our results unravel the unique broadband nonlinear absorptive behavior of monolayer MoSe2under ultrafast excitation and highlight the potential of using monolayer TMDs as broadband ultrafast optical switches with customizable saturable absorption characteristics

    Impurity band assisted carrier relaxation in Cr doped topological insulator Bi2Se3

    Get PDF
    Topological insulators (TIs) with unique band structures have wide application prospects in the fields of ultrafast optical and spintronic devices. The dynamics of hot carriers plays a key role in these TI-based devices. In this work, using the time- and angle-resolved photoemission spectroscopy technique, the relaxation process of the hot carriers in Cr-doped Bi2Se3 has been systematically studied since the ferromagnetic TI is one of the key building blocks for next-generation spintronics. It is found that electronic temperature (Te) and chemical potential (μ) decrease faster with the increase in the Cr doping concentration. Similarly, the lifetime (τ) of the excited electrons also decreases with more Cr doped into Bi2Se3. The results suggest a mechanism of impurity band-assisted carrier relaxation, where the impurity band within the bulk bandgap introduced by Cr doping provides significant recombination channels for the excited electrons. This work directly illustrates the dynamic process of the photon-generated carriers in Cr-doped Bi2Se3, which is expected to promote the applications of (Bi1-xCrx)2Se3 in photoelectric devices

    Sensitive and Ultrabroadband Phototransistor Based on Two-Dimensional Bi2O2Se Nanosheets

    Get PDF
    Bi2O2Se, a high-mobility and air-stable 2D material, has attracted substantial attention for application in integrated logic electronics and optoelectronics. However, achieving an overall high performance over a wide spectral range for Bi2O2Se-based devices remains a challenge. A broadband phototransistor with high photoresponsivity (R) is reported that comprises high-quality large-area (≈180 µm) Bi2O2Se nanosheets synthesized via a modified chemical vapor deposition method with a face-down configuration. The device covers the ultraviolet (UV), visible (Vis), and near-infrared (NIR) wavelength ranges (360–1800 nm) at room temperature, exhibiting a maximum R of 108 696 A W−1 at 360 nm. Upon illumination at 405 nm, the external quantum efficiency, R, and detectivity (D*) of the device reach up to 1.5 × 107%, 50055 A W−1, and 8.2 × 1012 Jones, respectively, which is attributable to a combination of the photogating, photovoltaic, and photothermal effects. The devices reach a −3 dB bandwidth of 5.4 kHz, accounting for a fast rise time (τrise) of 32 µs. The high sensitivity, fast response time, and environmental stability achieved simultaneously in these 2D Bi2O2Se phototransistors are promising for high-quality UV and IR imaging applications

    Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities

    Get PDF
    Review aricleGanoderma genus comprises one of the most commonly studied species worldwide, G. lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity

    Spin-ARPES EUV beamline for ultrafast materials research and development

    Get PDF
    A new femtosecond, Extreme Ultraviolet (EUV), Time Resolved Spin-Angle Resolved Photo-Emission Spectroscopy (TR-Spin-ARPES) beamline was developed for ultrafast materials research and development. This 50-fs laser-driven, table-top beamline is an integral part of the "Ultrafast Spintronic Materials Facility", dedicated to engineering ultrafast materials. This facility provides a fast and in-situ analysis and development of new materials. The EUV source based on high harmonic generation process emits 2.3 × 1011 photons/second (2.3 × 108 photons/pulse) at H23 (35.7 eV) and its photon energy ranges from 10 eV to 75 eV, which enables surface sensitive studies of the electronic structure dynamics. The EUV monochromator provides the narrow bandwidth of the EUV beamline while preserving its pulse duration in an energy range of 10-100 eV. Ultrafast surface photovoltaic effect with ~650 fs rise-time was observed in p-GaAs (100) from time-resolved ARPES spectra. The data acquisition time could be reduced by over two orders of magnitude by scaling the laser driver from 1 KHz, 4W to MHz, KW average power

    Towards complete all-optical emission control of high-harmonic generation from solids

    No full text
    Optical modulation of high-harmonics generation in solids enables the detection of material properties such as the band structure and promising new applications such as super-resolution imaging in semiconductors. Various recent studies have shown optical modulation of high-harmonics generation in solids, in particular, suppression of high-harmonics generation has been observed by synchronized or delayed multi-pulse sequences. Here we provide an overview of the underlying mechanisms attributed to this suppression and provide a perspective on the challenges and opportunities regarding these mechanisms. All-optical control of high-harmonic generation allows for femtosecond, and in the future possibly subfemtosecond, switching, which has numerous possible applications: These range from super-resolution microscopy, to nanoscale controlled chemistry, and highly tunable nonlinear light sources

    Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2semimetal films

    Get PDF
    WTe 2 is a unique material in the family of transition metal dichalcogenides and it has been proposed as a candidate for type-II Weyl semimetals. However, thus far, studies on the optical properties of this emerging material have been significantly hindered by the lack of large-area, high-quality WTe 2 materials. Here, we grow a centimeter-scale, highly crystalline WTe 2 ultrathin film (∼35 nm) by a pulsed laser deposition technique. Broadband pump-probe spectroscopy (1.2-2.5 μm) reveals a peculiar ultrafast optical response where an initial photo-bleaching signal (lasting ∼3 ps) is followed by a long-lived photoinduced absorption signature. Nonlinear absorption characterization using femtosecond pulses confirms the saturable absorption response of the WTe 2 ultrathin films, and we further demonstrated a mode-locked Thulium fiber laser using a WTe 2 absorber. Our work provides important insights into linear and nonlinear optical responses of WTe 2 thin films

    Hot Phonon Bottleneck Stimulates Giant Optical Gain in Lead Halide Perovskite Quantum Dots

    No full text
    Hot phonon bottleneck (HPB), one of the dominant effects for tuning hot carrier (HC) cooling, has been extensively studied in lead halide perovskites (LHP), and most attention has been devoted to its role in those photovoltaic devices. However, behaviors of HPB in strongly confined systems and its influence on optical gain remain obscure. Herein, by monitoring state-resolved relaxation in strongly confined CsPbBr3 quantum dots (QDs), we discover a discrete cooling process of HCs and demonstrate that their elongation, induced by HPB, primarily occurs during the intraband relaxation from the first excited (1P) to the lowest (1S) states. Moreover, a threshold-like character of HPB in LHP QDs, where the energy dissipation rate significantly drops only beyond a certain carrier density, could be ascribed to the nonadiabatic interaction by coupling with ligand vibrations. Remarkably, HPB has been found to trigger the formation of a giant optical gain (6000 cm–1) near the second absorption peak, and spectral analysis indicates its origin from population inversion at the higher-transition or 1P state. Our findings could strengthen the understanding of photophysics in LHP QDs and guide the development of efficient and broadband lighting applications
    corecore