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Research highlights  

Chemical features of Ganoderma bioactive polysaccharides were discussed. 

Methods for extraction, isolation and identification were evaluated. 

Bioactivity of polysaccharidic extracts and purified compounds were discussed.  

Integration of data allowed deduction of structure-activity relationships. 
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ABSTRACT 

Ganoderma genus comprises one of the most commonly studied species worldwide, G. 

lucidum. However, other Ganoderma species have been also reported as important 

sources of bioactive compounds. Polysaccharides are important contributors to the 

medicinal properties reported for Ganoderma species, as demonstrated by the numerous 

publications, including reviews, on this matter. Yet, what are the chemical features of 

Ganoderma polysaccharides that have bioactivity? In the present manuscript, the 

chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor 

and antimicrobial activities (the most studied worldwide) are analyzed in detail. The 

composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of 

glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods 

for extraction, isolation and identification are evaluated and, finally, the bioactivity of 

polysaccharidic extracts and purified compounds are discussed. The integration of data 

allows deduction of structure-activity relationships and gives clues to the chemical 

aspects involved in Ganoderma bioactivity.   

 

KEYWORDS: Ganoderma; Polysaccharides; Chemical features; Bioactivity; 

Structure-activity 
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1. Introduction 

Ganoderma is a genus of polypore macrofungi growing in decaying logs or tree stumps 

(Kirk et al., 2011). Commonly known as Lingzhi, Ganoderma comprises the most 

studied species of medicinal mushrooms in the world. In ancient China, Lingzhi was 

believed to bring longevity, due to its mysterious power of healing the body and 

calming the mind (Huie and Di, 2004). 

 

1.1. Bioactivity of Ganoderma 

The above mentioned genus has been widely studied regarding its  bioactive properties 

(Paterson, 2006; Nie et al., 2013), including antibacterial, antioxidant, antitumor and 

other effects (Wang et al., 1997; Wasser, 2002; Heleno et al., 2012; Li et al., 2012; 

Heleno et al., 2013; Popović et al., 2013; Zhonghui et al., 2013). The beneficial health 

properties of Ganoderma species are attributed to a wide variety of bioactive 

components, such as polysaccharides, triterpenes, sterols, lectins and other proteins 

(Wang et al., 2002; Ferreira et al., 2010).  

Different kinds of bioactive polysaccharides have been extracted and isolated from the 

fruiting bodies of different Ganoderma species (Kozarsky et al., 2011; Liu et al., 2010; 

Kozarsky et al., 2012; Ma et al., 2013; Shi et al., 2013), and represent a structurally 

diverse class of biological macromolecules with a wide-range of physiological 

properties.  The major bioactive Ganoderma polysaccharides are composed of (1→3), 

(1→6)-α/β-glucans, glycoproteins and water soluble heteropolysaccharides (Nie et al., 

2013) with glucose, mannose, galactose, fucose, xylose and arabinose combined in 

different proportions and types of glycosidic linkages, as well as peptide bonds (Chen et 

al., 2008; Wang and Zhang, 2009). As polysaccharides are very complex molecules, 

their detailed characterization in specific glycosidic linkages, molecular weight and 
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sugars composition is mandatory in order to establish structure-biological activity 

relationships. Nevertheless most of the articles available in the literature, do not report 

these parameters, which is a drawback in the understanding of the most crucial chemical 

features for polysaccharides bioactive properties such as antioxidant, antitumor and 

antimicrobial activities. 

 

1.2. Bioactivity of Ganoderma polysaccharides 

Most of the studies on bioactivities of polysaccharides, glycopeptides or polysaccharidic 

crude extracts have been performed using Ganoderma lucidum (Nie et al., 2013). This 

species has been under special attention because of the potent antioxidant, antitumor 

and antibacterial activities of the polysaccharides, glycoproteins and polysaccharidic 

extracts obtained from the fruiting bodies (Jia et al., 2009; XiaoPing et al., 2009; Shi et 

al., 2013).  

Antioxidant properties include free radicals scavenging abilities, reducing power and 

chelating effects on ferrous ions, among others (Liu et al., 2010; Kozarski et al., 2011). 

The radicals scavenging activity seems to be related to an increase in the activity of 

antioxidant enzymes: superoxide dismutase (SOD) which catalyzes dismutation of 

superoxide anion to hydrogen peroxide; catalase (CAT) which detoxifies hydrogen 

peroxide and converts lipid hydroperoxides to nontoxic substances; and glutathione 

peroxidase (GSH-Px) which maintains the levels of reduced glutathione (GSH) 

(YouGuo et al., 2009; XiaoPing et al., 2009).  

Antitumor polysaccharides exert their bioactivity mostly via activation of the immune 

response of the host, enhancing the host’s defense system (Mizuno et al., 1995b). The 

antitumor properties of water-soluble polysaccharide-enriched fractions from the 

fruiting bodies of G. lucidum seem to be related to the production stimulation of 
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interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6 from human monocyte-

macrophages, and interferon (IFN)-γ from T lymphocytes (Wang et al., 1997). 

There are only a few reports on antimicrobial activities of polysaccharides from 

Ganoderma species. This genus has been widely studied for its therapeutic properties, 

but less investigated as a source of new antibacterial agents (Gao et al., 2003a). 

Nevertheless, some polysaccharides from Ganoderma species exert antibacterial 

activity by inhibiting the growth of bacteria and, in some cases, by killing pathogenic 

bacteria (Skalicka-Woźniak et al., 2012).  

Although being very active as antioxidants and antimicrobials, Ganoderma 

polysaccharides are mostly known as antitumor agents; however the mechanisms of 

action involved in their bioactivities are not well understood. Furthermore, most of the 

studies are performed under in vitro conditions, with very few experiments using in vivo 

assays. 

This review aims to contribute to the knowledge of bioactivity (mainly antioxidant, 

antitumor and antimicrobial properties) of polysaccharides, glycoproteins and 

polysaccharidic extracts obtained from Ganoderma species. The most common 

extraction and isolation procedures are presented, including their chemical features. 

This includes discussion of monosaccharides’ composition, type of glycosidic linkages, 

branching patterns and linkages to proteins, with these features being related to the 

corresponding bioactivities. 

 

2. Extraction, isolation and identification of Ganoderma polysaccharides 

2.1. Chemical features of the most common polysaccharides found in Ganoderma 

According to different researchers, the polysaccharides isolated from Ganoderma are 

constituted by glucose, mannose, galactose, fucose, xylose and arabinose, with different 
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combinations and different types of glycosidic linkages, and which can be bound to 

protein or peptide residues (polysaccharide-protein or -peptide complexes) (Sone et al., 

1985; Zhang et al., 2007; Chen et al., 2008; Wang and Zhang, 2009; Ferreira et al., 

2010; Nie et al., 2013). These carbohydrates are characterized by their molecular 

weight, degree of branching, and higher (tertiary) structures (Ferreira et al., 2010), and 

have different compositions, comprising β-glucans, hetero-β-glucans, heteroglycans or 

α-manno-β-glucan complexes (Moradali et al., 2007).  

Homo-glucans are linear or branched biopolymers having a backbone composed of α- 

or β-linked glucose units (such as (1→3), (1→6)-β-glucans and (1→3)-α-glucans), and 

might contain side-chains attached at different positions. Among the homo-glucans, β-

glucans (primary components of the cell walls of higher fungi) are glucose polymers 

that can exist as a non-branched (1→3)-β-linked backbone or as a (1→3)-β-linked 

backbone with (1→6)-β-branches (Moradali et al., 2007; Ferreira et al., 2010).  

These polysaccharides have either linear or branched molecules in a backbone 

composed of α- or β-linked glucose units, containing side-chains that are attached in 

different ways. Hetero-glucan side-chains contain glucuronic acid, xylose, galactose, 

mannose, arabinose or ribose moieties as a main component or in different 

combinations (Wasser, 2002; Ferreira et al., 2010). 

Glycans are other polysaccharides that are found in Ganoderma. These polysaccharides, 

in general, contain units other than glucose in their backbone. They are classified as 

galactans, fucans, xylans, and mannans by the individual sugar components in the 

backbone (Moradali et al., 2007). Hetero-glycan side-chains contain arabinose, 

mannose, fucose, galactose, xylose, glucuronic acid, and glucose as a main component 

or in different combinations (Wasser, 2002; Moradali et al., 2007). 
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Polysaccharides can also be covalently bound to proteins or peptides as polysaccharide-

protein or –peptide complexes, which possess antioxidant and antitumor potential (Jia et 

al., 2009; Ferreira et al., 2010). Glycoproteins are polysaccharide-protein complexes, 

and such compounds include β-glucan-protein, α-glucan-protein and heteroglycan-

protein complexes. On the other hand, glycopeptides are a group structurally similar to 

glycoproteins, but with a smaller chain of amino acids (Ferreira et al., 2010). Finally, 

proteoglycans are another class of glycoproteins, which are heavily glycosylated. They 

consist of a core protein with one or more covalently attached glycosaminoglycan 

chain(s) (Moradali et al., 2007). An example of this is GLIS (G. lucidum 

immunomodulating substance), a bioactive proteoglycan isolated from the fruiting 

bodies of G. lucidum.  GLIS contains carbohydrates and proteins in a ratio of 11.5:1, 

being the carbohydrate portion formed by seven different monosaccharides, 

predominantly D-glucose, D-galactose, and D-mannose in a molar ratio of 3:1:1 (Zhang 

et al., 2002). Thus, polysaccharides have been under special attention since they have an 

utmost capacity for carrying biological information because they have great potential 

for structural variability (Wasser, 2002).  

Polysaccharides have a huge diversity in their chemical structure and composition, and 

several details can differently influence their specific bioactivities. Thus, the full 

characterization of these molecules is crucial in order to identify the main bioactive 

groups and study the respective mechanism of action. 

 

2.2. Extraction procedures 

A wide range of polysaccharides with different chemical structures has been extracted 

and isolated from Ganoderma species with demonstrated bioactive properties such as 

antioxidant (Table 1), antitumor (Table 2) and antimicrobial (Table 3) activities.  
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According to the polysaccharide characteristics, the selection of an extraction method is 

very important; it is based on the structure and water-solubility of the polysaccharide, 

and depends especially on the cell wall structure. The basic principle is to break the cell 

wall from the outer layer to the inner layer under mild-to-strong extraction conditions 

(pH and temperature) (Zhang et al., 2007). Based on this principle, most 

polysaccharides are extractable with hot water, or acidic, saline and dilute alkali 

solutions, or with dimethyl sulfoxide (Mizuno et al., 1995a; Wasser and Weis, 1999; 

Gao et al., 2004; Zhao et al., 2005; Ye et al., 2009; YouGuo et al., 2009; Liu et al., 

2010; Dong et al., 2012; Nie et al., 2013; Zhonghui et al., 2013). 

Hot water extraction is the most common methodology for extraction of 

polysaccharides from Ganoderma. High temperature is required to accelerate 

dissolution of polysaccharides from cell walls (Nie et al., 2013). Hence, traditional 

procedures for extraction begin with powders of raw materials being defatted by organic 

solvents or with 80% aqueous ethanol to eliminate low molecular weight compounds. 

After that, the material is successively extracted with water (e.g., 100ºC for 3 h), or with 

saline and diluted alkali solutions at different temperatures (e.g., 2% ammonium oxalate 

at 100ºC for 6 h, and 5% sodium hydroxide at 80ºC for 6 h). The hot water extraction 

yields water-soluble polysaccharides; on the other hand, extraction with alkali solution 

yields water-insoluble ones (Zhang et al., 2007; Nie et al, 2013). 

Other techniques such as microwave, ultrasonic, ultrasonic/microwave, and enzymatic 

treatments are also used, which could promote the breakage of the cell wall and increase 

the yield of the extracted polysaccharides (Huang et al., 2007; Xu et al., 2007; Huang 

and Ning, 2010; Zhao et al., 2010; Huang et al., 2011; Ma et al., 2013; Shi et al., 2013). 

However, following the extraction procedure itself, it is necessary to remove free 

proteins. Sevag method is the typically used method for this in Ganoderma species (the 
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proteins are precipitated after repeated denaturation by shaking with a solution of 

octanol in chloroform) (Staub, 1999). 

In order to obtain the crude polysaccharides after dialyzing against water, the de-

proteinized solution is precipitated by alcohol, methanol or acetone. Finally, to obtain 

pure polysaccharides, purification is usually carried out through chromatographic 

techniques, such as ion-exchange, gel filtration and affinity chromatography (Zhang et 

al., 2007; Chen et al., 2008; Huang et al., 2011; Jiang et al., 2012). Essentially, ion-

exchange chromatography through DEAE-cellulose columns separate neutral 

polysaccharides from acidic ones. Neutral polysaccharides are then separated into α-

glucans (adsorbed fraction) and β-glucans (non-adsorbed fraction) using gel filtration 

and affinity chromatography. The same procedure with acidic polysaccharides (after 

elution with 1 M NaCl) yields purified polysaccharides (Mizuno, 1999). A combination 

of techniques may also be used, such as fractionation by ethanol, fractional 

precipitation, acidic precipitation with acetic acid or freeze-thawing (Liang et al., 1994; 

Zhang et al., 2007).  

As mentioned above, the extraction procedures/conditions are applied according to the 

characteristics (e.g., molecular weight, solubility) of the target polysaccharide(s). Most 

of the extraction procedures are well established and have been optimized in order to 

increase the extraction yield and efficiency by the use of new techniques such as 

ultrasonic/microwave and enzymatic treatments. 

 

2.3. Isolation and identification procedures 

Since glycan structures are diversified, it becomes difficult to define a universal 

protocol for their analysis. The primary structure of a polysaccharide is defined by the 

composition in monosaccharides, configuration and position of glycosidic linkages, 
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sequence of monosaccharides, as well as the nature, number and location of appended 

non-carbohydrate groups. The analytical methods used to determine the primary 

structures of polysaccharides include gas-liquid chromatography with flame ionization 

detection (GLC-FID), gas-liquid chromatography with mass spectrometry (GLC-MS) 

and high performance liquid chromatography (HPLC), techniques that allow evaluation 

of monosaccharides’ composition; high performance anion-exe chromatography with 

pulsed amperometric detection (HPAEC-PAD), infrared (IR), exoglycosidase digestion 

with specific enzymes (limited to a few enzymes of high specificity) and mass 

spectrometry (MS) for the analysis of the configuration (α, β) of the anomeric carbon 

and position of the glycosidic linkages; and nuclear magnetic resonance (NMR) 

spectroscopic analysis that, besides the two previous features, allows inference of the 

sequence of the polysaccharide(s) (Varki et al., 1999; Zhao et al., 2005; Zhang et al., 

2007; Ye et al., 2009; Dong et al., 2012; Shi et al., 2013). Monosaccharide’s analysis 

provides precise molar ratios of individual sugars, and may suggest the presence of 

specific oligosaccharide classes, such as N- or O-glycans (Zhang et al., 2007). 

These techniques also allow obtaining the molecular weight of the polysaccharides. 

Sone et al. (1985) used HPLC to obtain the molecular weight of the polysaccharides 

from fruiting bodies and cultured medium of G. lucidum. In addition, Chen et al. (2008) 

obtained the molecular weight of a water-soluble protein-bound polysaccharide through 

gel chromatography. Moreover, Zhao et al. (2010) determined the homogeneity and 

average molecular weight of polysaccharide fractions by high performance gel filtration 

chromatography (HPGFC). More recently, Ma et al. (2013) determined the molecular 

weight distribution of G. lucidum polysaccharides (GLP) using high-performance gel 

permeation chromatography (HP-GPC) with an HPLC apparatus. 
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Other features, like conformational properties (e.g., polysaccharide dynamics), remain 

an area still under investigation. With development of high resolution instrumental 

processes, such as various light scattering techniques, x-ray diffraction analysis, small-

angle neutron scattering (SANS), atomic force microscopy (AFM) and high resolution 

NMR spectroscopy, it has become possible to study the conformation and 3D structure 

of a polysaccharide at the molecular level. Indeed, through the use of molecular 

mechanics and computer assisted energy minimization methods, it is possible to 

simulate and visualize the 3D structure of polysaccharides (Zhang et al., 2007). 

Currently, there are numerous existing tools for the isolation and characterization of 

polysaccharides.  

New isolation and identification techniques have been applied to polysaccharides 

analysis, facilitating the elucidation of their chemical structures. The use of efficient 

technologies such as NMR and MS, among others described above, allows the 

determination of specific chemical characteristics, such as the type of glycosidic 

linkages, sugars composition, and molecular weight. With this information it is possible 

to establish the main features on polysaccharides structure related to bioactivity, and 

give clues on this relationship. 

 

3. Antioxidant activity 

3.1. Ganoderma polysaccharides  

Among the Ganoderma genus, there are several reports in the literature describing the 

antioxidant activity of polysaccharides isolated from G. lucidum (Li et al., 2007; 

YouGuo et al., 2009; XiaoPing et al., 2009; Liu et al., 2010; Kao et al., 2012; Ma et al., 

2013; Shi et al., 2013; Zhonghui et al., 2013) (Table 1).  
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Homo-glucans and hetero-glucans isolated from this species have promising radical 

scavenging abilities, as evaluated by several in vitro antioxidant assays, such as 2,2-

diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, reducing power, chelating 

ability, hydroxyl radical scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-

sulphonic acid (ABTS) scavenging activity, superoxide radical scavenging activity and 

hydrogen peroxide scavenging activity, respectively (Liu et al., 2010; Ma et al., 2013; 

Shi et al., 2013) (Table 1). A low molecular weight β-1,3-glucan (LMG) was able to 

significantly increase the viability (from 40% to 80%) of a mouse leukaemic monocyte 

macrophage cell line (RAW 264.7) with H2O2-induced oxidative stress, reduced 

reactive oxygen species (ROS) formation and also suppressed the activities of neutral 

and acidic sphingomyelinases (SMases) (Kao et al., 2012). A homo-polysaccharide 

composed by mannose also had very interesting antioxidant activity under in vitro and 

in vivo conditions. This polysaccharide displayed promising free radicals (O2
.-; HO. and 

DPPH) scavenging ability and was able to increase the activity of the antioxidant 

enzymes, SOD (from 67.4 to 115.4 U/mL and 140 to 230 U/mL), CAT (from 7.82 to 

13.91 U/mL and 13.0 to 22.0 U/mL) and GSH-Px (from 10.42 to 26.39 U/mL and 16.0 

to 36.0 U/mL), as well as decrease malondialdehyde (MDA) levels (from 16.0 to 8.0 

mmol/mL) in rats with cervical and ovarian carcinomas (YouGou et al., 2009; XiaoPing 

et al., 2009). Zhonghui et al. (2013) studied the antioxidant capacity of a G. lucidum 

polysaccharide (GL-PS) against exercise-induced oxidative stress, which was related 

with the dose; the activity of the antioxidant enzymes significantly increased: SOD 

(from 110 to 170 U/mg protein), CAT (from 1.58 to 1.95 U/mg protein) and GSH-Px 

(from 6.0 to 15.0 U/mg protein), while the levels of MDA decreased (from 8.2 to 4.8 

nmol/mg protein). A hetero-glucan also isolated from G. lucidum showed antioxidant 

activity against mitochondria oxidative injury induced by γ-irradiation, causing a drastic 
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decrease in MDA (from 1.24 to 0.55 nmol/mg protein), lipid hydroperoxides (LOOH) 

(from 1.09 to 0.04 nmol/mg protein) and protein carbonyl formation (from 0.84 to 0.22 

nmol/mg protein), while protein thiol formation increased (from 9.28 to 13.42 nmol/mg 

protein). This hetero-glucan also increased the activity of the antioxidant enzymes SOD 

(from 3.07 to 6.11 U/mg protein), CAT (from 3.25 to 7.08 U/mg protein) and GSH-Px 

(from 2.66 to 4.77 U/mg protein) (Li et al., 2007). The main linkages in the homo-

glucans were β-(1-3), (1-4) and (1-6) glycosidic bonds, as also in hetero-glucans, 

composed of different sugars, such as mannose, glucose, rhamnose, galactose, 

galactose, xylose, arabinose and fucose in different proportions. Liu et al. (2010) 

isolated a homo-glucan and a hetero-glucan, both low molecular weight 

polysaccharides, and reported a higher antioxidant activity of the homo-glucan because 

of its lower molecular weight. Nevertheless, Ma et al. (2013) isolated hetero-glucans 

with different molecular weights, and the polysaccharide with the highest molecular 

weight gave the highest antioxidant activity.  

 

3.2. Ganoderma glycopeptides  

There are several reports on the in vitro and in vivo antioxidant activity of glycopeptides 

obtained from Ganoderma sp. (Yu-Hong et al., 2002; Zhang et al., 2003; Sun et al., 

2004; Zhao et al., 2004; Chen et al., 2008; Jia et al., 2009; Li et al., 2009; Li et al., 

2010; Li et al., 2011; Li et al., 2012a). 

The most abundant component isolated from G. atrum (PSG-1) is a glycoprotein with a 

molecular weight of 1.013 KDa, composed of 10.1% of protein with 17 general amino 

acids, and different sugars namely, mannose, galactose and glucose linked by O-

glycosidic linkages (Chen et al., 2008). PSG-1 was studied for its antioxidant activity 

against anoxia/re-oxygenation injury in neonatal rat cardiomyocytes, anoxia/re-
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oxygenation-induced oxidative stress in mitochondrial pathway, oxidative stress 

induced by D-galactose in mouse brain, and age-related oxidative stress in mice. The 

authors reported very potent antioxidant activity by protecting cardiomyocytes from 

anoxia/re-oxygenation. It significantly increased the activity of antioxidant enzymes, 

decreased the levels of MDA, and attenuated ROS formation, thereby having the 

potential to promote health and improve aging-associated pathologies by modifying the 

redox system and improving the immune function (Li et al., 2009; Li et al., 2010; Li et 

al., 2011; Li et al., 2012a).  

Yu-Hong et al. (2002) studied the antioxidant activity of a glycopeptide (GLP) isolated 

from G. lucidum against the injury of macrophages induced by ROS. It was composed 

of 14 amino acids, D-rhamnose, D-xylose, D-fructose, D-galactose, D-mannose, and D-

glucose as sugars, linked by β-glycosidic linkages, and with a molecular weight of 

0.585 KDa. GLP showed in vitro and in vivo antioxidant activity by increasing the 

survival rate of macrophages, and protecting the mitochondria against injury by 

membrane-permeant oxidant (tBOOH). GLP was also studied for its antioxidant activity 

on streptozotocin (STZ)-diabetic rats, being able to increase non-enzymatic and 

enzymatic antioxidants, serum insulin level and to reduce lipid peroxidation (Jia et al., 

2009).  

Sun et al. (2004) studied GLP antioxidant activity in different oxidation systems 

(soybean and lard oils as oxidation substrates), and described an excellent activity 

comparable to the synthetic antioxidant butylated hydroxytoluene (BHT) in soybean oil. 

This glycopeptide was able to block soybean lipoxygenase activity, showed scavenging 

activity toward hydroxyl radicals produced in a deoxyribose system, quenched 

superoxide radical ion produced by pyrogallol autoxidation, displayed antioxidant 
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activity in rat liver tissue homogenates and mitochondrial membrane peroxidation 

systems, and also blocked the auto-hemolysis of rat red blood cells.  

A glycopeptide isolated from G. lucidum, with a molecular weight of 0.5849 KDa, 

composed of 17 amino acids and rhamnose, xylose, fructose, galactose, mannose and 

glucose as sugars, linked by β-glycosidic linkages, had antioxidant activity by reducing 

ROS formation, MDA levels and increasing the activity of manganese superoxide 

dismutase in rat cerebral cortical neuronal cultures exposed to hypoxia/re-oxygenation 

(Zhao et al., 2004). This glycopeptide also showed antioxidant activity (free radicals 

scavenging ability) by protecting against alloxan-induced pancreatic islets damage 

under in vitro and in vivo conditions (Zhang et al., 2003).  

 
3.3. Crude polysaccharidic Ganoderma extracts  

The antioxidant activity of crude polysaccharidic extracts obtained from Ganoderma 

sp., have been recently described (Shi et al., 2010; Yang et al., 2010; Heleno et al., 

2012; Kozarski et al., 2012; Zhao et al., 2012; Pan et al., 2013). 

A polysaccharidic extract from G. lucidum showed antioxidant activity in rats with 

gastric cancer by increasing the activity of antioxidant enzymes (SOD, CAT and GSH-

Px) (Pan et al., 2013). Other polysaccharidic extracts, also obtained from G. lucidum, 

displayed radicals scavenging ability, reducing power and lipid peroxidation inhibition, 

with the extract obtained from spores as the most effective (Heleno et al., 2012). 

Kozarski et al. (2012) reported the antioxidant activity of polysaccharidic extracts from 

G. applanatum and G. lucidum namely, radicals scavenging activity, reducing power, 

lipid peroxidation inhibition and chelating abilities.  

Zhao et al. (2012) reported the radio-protective effects of a G. lucidum polysaccharidic 

extract on mouse deoxyribonucleic acid (DNA) damage induced by cobalt-60 gamma-

irradiation, and described that DNA strand-break and micronuclei frequency were 
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significantly reduced, while GSH-Px activity and nucleated cell count in bone marrow 

significantly increased. This polysaccharidic extract also increased SOD activity and 

decreased MDA levels. 

Polysaccharidic extracts prepared from G. lucidum also lowered serum levels of MDA 

and intercellular adhesion molecule-1 in heart and liver of mice with ischemic 

reperfusion, and increased antioxidant enzymes activity (Shi et al., 2010). In diabetic 

rats, the polysaccharidic extract was able to reduce oxidative injury and inhibit 

apoptosis by increasing antioxidant enzymes activity, and modifying B-cell lymphoma 

2 (bcl-2) expression and bcl-2-associated X protein (bax)/bcl-2 ratio (Yang et al., 2010).  

The studies performed over the last decades concerning antioxidant properties of 

polysaccharides, glycoproteins and crude extracts described that the radicals scavenging 

activity seems to be mostly related with the increase in the activity of antioxidant 

enzymes such as SOD, CAT and GSH-Px (Yu-Hong et al., 2002; XiaoPing et al., 2009; 

YouGuo et al., 2009; Pan et al., 2013).   

There are not many studies on the antioxidant activity of Ganoderma polysaccharides, 

and the existing ones only report polysaccharides from G. lucidum. Most of these 

studies were carried out under in vitro conditions; and reports using in vivo assays are 

scarce and do not describe the mechanism of action involved. Instead, they only 

describe an increase in antioxidant enzymes activity after exposure to a specific injury. 

Additionally, those polysaccharides were isolated but not completely chemically 

characterized. The available data generally include molecular weights and, in some 

cases, sugars composition; glycosidic linkages are rarely characterized. Therefore, it is 

not possible to highlight a key chemical feature directly related with the antioxidant 

activity of Ganoderma polysaccharides, since there is a lack of information on their 

chemical characteristics. Based on the existing reports with available information about 
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structural features, it can only be speculated that homo-glucans and hetero-glucans with 

β (1→3) glycosidic linkages have strong antioxidant properties (Liu et al., 2010; Kao et 

al., 2012). 

 
4. Antitumor Ganoderma polysaccharides 

4.1. Ganoderma polysaccharides  

The crude water-soluble extract of G. lucidum has been used in traditional Chinese 

medicine as antitumor and immunomodulating agent (Zong et al., 2012). Most reports 

concerning the antitumor activity of polysaccharides from Ganoderma demonstrate that 

it is mainly related to the host-mediated immune function (Gao et al., 2005a; Paterson, 

2006). Ganoderma polysaccharides have received special attention from the scientific 

community, especially those from the species G. lucidum, and their antitumor activity 

has been studied both in vitro and in vivo.  

Hence, bioactive polysaccharides have been isolated from the fruiting bodies of G. 

lucidum (Bao et al., 2002; Zhao et al., 2010) and from the mycelia cultivated in liquid 

culture medium (Kim et al., 1993; Peng et al., 2005; Liu et al., 2012). Some 

polysaccharides have also been isolated from the culture medium of growing mycelium 

(extracellular polysaccharides) (Sone et al., 1985). 

Antitumor effects of polysaccharides isolated from G. lucidum, such as the branched 

heteroglucan, arabinoxyloglucan (GL-1), were initially observed in subcutaneously 

transplanted sarcoma-180 ascites growing in mice (Miyazaki and Nishijima, 1981; 

Table 2). This polysaccharide contains a backbone and side-chains involving D-

glucopyranosyl, α-(1→4), β-(1→6) and β-(1→3) linkages; arabinose is present as a part 

of the non-reducing terminal residues, and xylose is present as a part of the side-chain. 

This hetero-glucan strongly inhibited the growth of sarcoma-180 solid-type tumor 

(inhibition ratio, 95.6 - 98.5%) after intra-peritoneal injection (20 mg/Kg) for 10 days in 
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imprinting control regions (ICR) of mice (Miyazaki and Nishijima, 1981; Table 2). 

Sone et al. (1985) also described the antitumor activity of G. lucidum polysaccharides 

either from the fruiting bodies or the mycelium against sarcoma-180 solid tumor. Once 

again, the studied polysaccharides had (1→3)-β-D-glucan bonds and some (1→4)-

linked glucosyl units (Table 2).   

The antitumor potential of Ganoderma polysaccharides is usually related to their 

immunomodulatory activity. Since polysaccharides have a large molecular weight, these 

compounds cannot penetrate cells, but they bind to immune cell receptors. It has been 

proven that there are fungal pattern-recognition molecules for the innate immune 

system. However, the mechanism by which the innate immune system recognizes and 

responds to fungal cell wall carbohydrates is a very complex and multifactorial process 

(Lowe et al., 2001).  

Yan and collaborators suggested that the activity of polysaccharides from G. lucidum 

was mediated through the complement receptor type 3 (CR3 receptor), which binds β-

glucan polysaccharides (Yan et al., 1999). Indeed, G. lucidum polysaccharide (GLP), 

known as a homo-glucan from G. lucidum, isolated by hot aqueous extraction and 

ethanol precipitation from the fruiting bodies of this medicinal mushroom, exerted its 

antitumor activity in sarcoma-180 solid tumor by inducing a cascade of immuno-

modulatory cytokines. It could induce a marked increase in the gene expression levels 

of IL-lα (2-fold), IL-lβ (3-fold), TNF-α (2-fold), IL-12 p35 (up to 6-fold), and IL-12 

p40 in the splenocytes. In the macrophages, GLP promoted a remarkable increase in the 

gene expression levels of IL-lβ (2.5- to 3-fold), TNF-α (up to 6-fold), and granulocyte-

macrophage colony-stimulating factor (GM-CSF) (up to 2-fold) (Ooi et al., 2002; Table 

2). GLP also exhibited antitumor effects on solid tumor induced by Ehrlich’s ascites 

carcinoma cells. Indeed, 100 mg/kg of this polysaccharide showed 80.8% and 77.6% 
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reduction in tumor volume and tumor mass, respectively, when administered 24h after 

tumor cell implantation. Moreover, GLP with the same dose but administered prior to 

tumor inoculation, showed 79.5% and 81.2% inhibition of tumor volume and tumor 

mass, respectively (Soniamol et al., 2011). GLP not only has (1→3)-β-D-glucan bonds, 

but also has (1→6)-β-D branches. Furthermore, structural features such as (1→3)-β- 

linkages in the main chain of the glucan, and additional (1→6)-β-branch points, seem to 

be important factors for the observed antitumor activity.  

The same features were verified for the heteroglucans from G. tsugae described by Peng 

et al., (2005), which were composed by (1→3)-β-D-glucans and (1→4)-α-D-glucans 

and also possess antitumor activity against sarcoma-180 solid tumor (Table 2). 

Actually, the fruiting body of G. tsugae is used to promote health and longevity in 

Oriental countries (Haghi, 2011), which can be, in part, justified for these findings. 

More recently, other heteropolysaccharides from Ganoderma  have been studied both in 

vivo and in vitro, establishing inhibitory activity in tumor cell lines, apoptosis induction 

and inhibition of tumors transplanted in mice (Liu et al., 2012; Zhang et al., 2012; Ma et 

al., 2013;Table 2).   

Other polysaccharides from G. lucidum with immunomodulatory properties have been 

described, namely PG-1 and PG-2, which increased the proliferation and pinocytic 

activity of macrophages and played an inhibitory effect on the growth of a human breast 

cancer cell line (MDA-MB-231) (Zhao et al., 2010; Table 2). 

There are also reports on the antitumor potential of other polysaccharides from 

Ganoderma species but without their chemical characterization.  For example, other 

authors reported the antitumor properties of mannogalactoglucans and (1→3)-β-

glucuronoglucans from G. lucidum tested in vitro (in cell lines) and of glucogalactans 

from G. tsugae tested in vivo (pre-clinical animal models), through their 
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immunomodulatory activity (Zhuang et al., 1994; Cho et al., 1999; Wasser, 2002; 

Moradali et al., 2007; Zhang et al., 2007; Ferreira et al., 2010).  

 

4.2. Ganoderma polysaccharide-protein or -peptide complexes  

As mentioned above, polysaccharides isolated from Ganoderma may be also bound to 

protein or peptide residues. These polysaccharide-protein or -peptide complexes have 

also been described as having antitumor properties. G. lucidum polysaccharide peptide 

(GLPP), potently inhibited human lung carcinoma cell line (PG), proliferation in vitro 

and reduced the xenograft (of the PG cell line) in albino laboratory-bred strain of the 

house mouse (BALB/c) nude mice in vivo. This compound proved to have anti-

angiogenic activity, which can be the basis of its antitumor effects.  This 

polysaccharide-peptide with relative molecular weight (MW) of 512500, is composed 

by D-rhamnose, D-xylose, D-fructose, D-galactose, and D-glucose linked together by β-

glycosidic linkages (Cao and Lin, 2004).  

A fucose-containing glycoprotein fraction from the water-soluble extract of G. lucidum 

seems also to be responsible for its immunomodulating and antitumor activities through 

the stimulation of the expression of cytokines, especially IL-1, IL-2 and IFN-γ (Wang et 

al., 2002). Although the active fraction contained the majority of D-glucose, D-mannose 

and D-galactose, the only active component identified in the glycopeptide fraction 

contained fucose residues. In addition, the crude extract of G. lucidum did not stimulate 

expression of cytokines, whereas the glycoprotein fraction significantly induced 

expression of IL-1, IL-2, and IFN-γ (Wang et al., 2002). 

A well-known proteoglycan from G. lucidum is the previously mentioned GLIS 

(Section 2.1). This proteoglycan with a molecular weight of about 2000 kDa, and 

carbohydrate portion consisting of hetero-polysaccharides composed predominantly of 
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D-glucose, D-galactose and D-mannose, exhibits an effective antitumor effect by 

increasing both humoral and cellular immune activities (Zhang et al., 2010). 

A water-soluble protein-bound polysaccharide from the fruiting bodies of G. atrum 

(PSG-1), besides the antioxidant properties previous reported, displayed potent 

antitumor activity in sarcoma180 transplanted mice by induction of tumor apoptosis 

through mitochondrial pathways, and its antitumor effect was related to immuno-

enhancement (Li et al., 2011a). This compound, proved to improve immunity by 

inhibiting proliferation of a mouse colon carcinoma cell line (CT26) via activation of 

peritoneal macrophages. In vivo, PSG-1 considerably suppressed the tumor growth in 

CT26 tumor-bearing mice (Zhang et al., 2013). 

A G. lucidum polysaccharide-peptide conjugate with a molecular weight of 0.5125 KDa 

and polysaccharide chain assembled in β-glycosidic linkages, also exhibited antitumor 

potential in different studies. For example, it significantly inhibited tumor growth in a 

murine sarcoma180 model, and inhibited proliferation of Human Umbilical Vein 

Endothelial Cells (HUVECs) by inducing cell apoptosis and decreasing the expression 

of secreted vascular endothelium growth factor (VEGF) in human lung cancer cells (Li 

et al., 2008; Cao and Lin, 2006).  

 

4.3. Ganoderma polysaccharidic extracts/fractions  

Polysaccharidic fractions from Ganoderma have also been described as having potential 

antitumor activity. Ganopoly is one of the most well-known aqueous polysaccharidic 

fractions from G. lucidum with antitumor potential. Treatment of mice with Ganopoly 

for 10 days could significantly reduce tumor weight in a dose-dependent manner in S-

180-bearing mice. Furthermore, the polysaccharide caused significant cytotoxicity in 

the human tumor cell lines: Human Caucasian Cervical Epidermoid Carcinoma (CaSki), 
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Human Cervical Cancer (SiHa), Human Hepatoma (Hep3B), Human Hepatocellular 

Liver Carcinoma (HepG2), Human Colon Carcinoma (HCT116) and Human Colon 

Adenocarcinoma Grade II (HT29) Cells in vitro, with marked apoptotic effects observed 

in CaSki, HepG2 and HCT116 cells (Gao et al., 2005a). Other studies showed that 

Ganopoly could enhance immune responses in patients with advanced-stage cancer, 

which could be an approach for overcoming immunosuppressive effects of 

chemotherapy/radiotherapy (Gao et al., 2003b; Gao et al., 2005b). 

Some studies also suggest that antitumor activity of polysaccharides from fresh fruiting 

bodies of G. lucidum (PS-G), is achieved through stimulation of the production of IL-

1β, TNF-α, and IL-6 from human monocyte-macrophages and IFN-γ from T 

lymphocytes. These studies were carried out in the human promyelocytic leukaemia 

(HL-60), and human lymphoma cell lines (U937) (Wang et al., 1997). G. lucidum 

polysaccharide (GL-B), consisting of seven fractions of polysaccharides isolated from 

this species, was tested both in vitro (HL-60, and sarcoma-180 cells), and in vivo 

(sarcoma-180 cells injected sub-dermally into the axillary fossa of the right foreleg of 

BALB/c mice), and this established that its antitumor potential is also related to TNF-α 

and IFN-γ (Zhang and Lin, 1999). Co-administration of G. lucidum polysaccharides and 

cyclophosphamide potentiated the antitumor activity of this drug (used to treat cancer 

and immune diseases) in mice. These results indicate that either G. lucidum or its active 

components have antitumor activity in mice, and that Ganoderma polysaccharides have 

a synergic effect on the antitumor activity of cyclophosphamide (Lin and Zhang, 1999). 

G. tsugae mycelium and fruiting body polysaccharidic fractions have also been 

investigated. Seven glycans with strong antitumor activities were obtained from 14 

water-soluble and 15 water-insoluble fractions extracted from G. tsugae fruiting bodies.  

The bioactivity against sarcoma-180/mice was tested, and tumor inhibition ratios from 
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26.1 to 100% were observed (Wang et al., 1993). Water-soluble fractions were protein-

containing glucogalactans associated mainly with mannose and fucose, but also 

containing arabinose and rhamnose; water-insoluble fractions represented protein-

containing β-(1→3)-glucans with different protein content and some of them with 

(1→6)-β-D-glucosyl branched chains. The molecular weight averages ranged from 8 × 

103 to 700 × 103 (Wang et al., 1993). Sixteen water-soluble polysaccharides were 

extracted from G. tsugae mycelium and examined for their antitumor effects on 

sarcoma-180 in mice (Zhang et al. 1994). The active polysaccharides obtained were: i) a 

glycan-protein complex containing 9.3% protein, with a hetero-glyco-chain of mannose 

and xylose; ii) a glucan-protein complex containing 25.8% protein and iii) a glycan-

protein with glucose as the main component, and associated with arabinose, mannose, 

xylose, and galactose. The molecular weight ranged from 10 ×10-3 to 16 ×10-3 (Zhang et 

al. 1994). Comparison of active water-soluble polysaccharides obtained from the 

fruiting body and mycelium showed that the first were gluco-galactan-protein 

complexes, but those of the mycelium were homo-glucan-protein complexes or a 

hetero-glycan composed of mannose and xylose (Wasser, 2002). However, and once 

again, the structure with β-(1→3)-glucans and, in some cases, with (1→6)-β-D-glucosyl 

branched chains was present in these bioactive polysaccharidic fractions.   

Other polysaccharidic fractions were also obtained from the water soluble extracts of G. 

applanatum. These preparations had antitumor properties against transplanted sarcoma-

180 in mice, and, for one of the obtained fractions, a complete regression of tumors was 

observed in more than half of animals; inhibition ratios were over 95%, with no sign of 

toxicity (Sazaki et al., 1971). These fractions were considered to be a glucan consisting 

partially of a mixture of β-(1→3) and (1→4) linked D-glucose residues.  
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Polysaccharidic extracts from the mycelium of G. lucidum also exhibited antitumor 

effects against fibrosarcoma in male and female mice and inhibited the metastasis of a 

lung tumor. 

Different studies showed that bioactive polysaccharides and extracts could stimulate 

blood mononuclear cells to increase cytokines, tumor necrosis factor, interferon and 

interleukins production, induce apoptosis and meaningfully increased the lifespan of the 

tumor-implanted mice (Paterson, 2006; Ramberg et al., 2010; Roupas et al., 2010; Liao 

et al., 2013). 

 

4.4. Structure-bioactivity relationship 

Polysaccharides are one of the biologically active groups of compounds found in 

mushrooms, namely in Ganoderma genus, which have antitumor properties (Wasser, 

2002; Lindequist et al., 2005; Paterson, 2006; Ferreira et al., 2010; Patel and Goyal, 

2012; Nie et al., 2013). Thus, Ganoderma has been considered a bioactive therapeutic 

fungus (Paterson, 2006) and its antitumor potential has been explored (Wang et al., 

1997; Yuen and Gohel, 2005).  

The study and description of the chemical features of Ganoderma polysaccharides are 

very important as they allow us to infer or deduce structure-bioactivity relationships. 

Different polysaccharides from the Ganoderma genus have been isolated and 

characterized especially in the past three decades. 

The first reports of Ganoderma polysaccharides structure date back to 1981, when 

Miyazaki and Nishijima characterized a water-soluble branched arabinoxyloglucan from 

G. lucidum, which contained β-(1→4)-, β-(1→6)-and β-(1→3)-D-glucopyranosyl 

residues in the backbone and side-chains. These authors inferred that the essential 
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structure for the antitumor activity of polysaccharides from Ganoderma might be a 

branched glucan core involving (1→3)-β-, (1→4)-β- and (1→6)–β- linkages. 

More recently, Bao et al. (2002) isolated three polysaccharides, two heteroglucans (PL-

1 and PL-4) and one glucan (PL-3) from the fruiting bodies of the same species. This 

study showed that PL-1 had a backbone consisting of 1,4-linked α-D-glucopyranosyl 

residues and 1,6-linked β-D-galactopyranosyl residues with branches at O-6 of glucose 

residues and O-2 of galactose residues, composed of terminal glucose, 1,6-linked 

glucosyl residues and terminal rhamnose, respectively. PL-3 was a highly branched 

glucan composed of 1,3-linked β-D-glucopyranosyl residues substituted at O-6 with 

1,6-linked glucosyl residues. PL-4 was comprised of 1,3-, 1,4-, 1,6-linked β-D-

glucopyranosyl residues and 1,6-linked β-D-mannopyranosyl residues. More recently, 

Wang et al. (2011) isolated five water-soluble heteropolysaccharides from the cultured 

fruiting body of G. lucidum, designated as GL-I to GL-V. These compounds proved to 

be heteropolysaccharides, mainly composed of glucose, galactose, mannose and 

arabinose. GL-I was the most branched of the heteropolysaccharides (27.0% degree of 

branching), while GL-V was mostly a linear glucan.  

The biological activity/antitumor potential of polysaccharides seems to be highly 

correlated with their chemical composition and configuration, as well as their physical 

properties, being exhibited by a wide range of glycans extending from homopolymers to 

highly complex heteropolymers (Ooi and Liu, 1999). As stated initially by Miyazaki 

and Nishijima (1981), more recent studies continue to point to the importance of 

structural features such as (1→3)-β-linkages in the main chain of the glucan and 

additional (1→6)-β- branch points as essential factors for the antitumor activity of 

polysaccharides (Wasser, 2002). Therefore, β-glucans containing mainly 1→6 linkages 

exhibit less activity, possibly due to their inherent flexibility of having too many 
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possible conformations (Zhang et al., 2007; Ferreira et al., 2010). However, antitumor 

polysaccharides may have other chemical structures, such as hetero-β-glucans (Mizuno 

et al., 1995b), heteroglycan (Gao et al., 1996), β-glucan-protein (Kawagishi et al., 

1990), α-manno-β-glucan (Mizuno et al., 1995b), α-glucan-protein (Mizuno et al., 

1995b) and heteroglycan-protein complexes (Zhuang et al., 1993; Mizuno et al., 1996). 

It has been described that the antitumor activity of mushroom polysaccharides 

containing glucose and mannose may be due to their immunomodulating activity, since 

a polysaccharide receptor, which has been demonstrated to have high specificity for 

glucose and mannose, has been found on human macrophages (Lombard, 1994). Triple 

helical conformation of (1→3)-β-glucans is considered an important structural feature 

for their immuno-stimulating activity, but how the triple helical conformation of (1→3)-

β-glucan precisely affects their antitumor action still remains unclear. Indeed, (1→3)-β-

glucans exhibit antitumor activity related to their triple helical conformation (Zhang et 

al., 2007). 

Higher antitumor potential seems to be also correlated with higher molecular weight 

(Mizuno et al., 1996; Wasser, 2002), lower level of branching and greater water 

solubility of β-glucans (Ferreira et al., 2010). Thus, although other features such as 

molecular weight or level of branching are very important for the antitumor potential of 

the polysaccharides, the molecules described above have the main glycosidic bonds 

required for this activity, which seems to be highly related with the results obtained.  

The antitumor potential is the most explored bioactivity of Ganoderma polysaccharides, 

being extensively studied; the chemical structures are completely characterized, and 

even some mechanisms of action are proposed by some authors (Yan et al., 1999; Ooi et 

al., 2002). Analysing the available data, it can be highlighted that the essential structure 

for the antitumor potential of polysaccharides is a branched glucan core involving 
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(1→3)-β-, (1→4)-β- and (1→6)-β-linkages (Miyazaki and Nishijima, 1981). 

Nevertheless, clinical human trails are needed to better understand the bioactivity of 

these interesting and extremely potent molecules, so that the investigation can progress 

in order to use these molecules in the development of new nutraceuticals or drugs. 

 

4.5. Antioxidant and antitumor potential  

The antitumor activity of Ganoderma, namely G. lucidum, seems to be also strongly 

related with its antioxidant properties, since water soluble polysaccharides extracted 

from G. lucidum were effective in preventing DNA strand breaks (Paterson, 2006). 

 An aminopolysaccharide fraction from G. lucidum (G009) was found to have the 

ability to protect against ROS, which is implicated in the pathophysiology of cancer 

(Pincemail, 1995). G009 inhibited iron-induced lipid peroxidation and inactivated 

hydroxyl radicals and superoxide anions. Furthermore, G009 also reduced oxidative 

DNA damage, suggesting that the aminopolysaccharide fraction of G. lucidum 

possesses chemopreventive potential (Lee et al., 2001).  

Two cerebrosides (glycosphingolipids consisting of D-glucose, sphingosine and 2-

hydroxypalmitoyl or 2-hydroxystearoyl fatty acid moiety, respectively), were also 

isolated from the fruiting body of G. lucidum (Mizushina et al., 1998). Both molecules 

inhibited DNA polymerases, suggesting their possible use for cancer therapy by 

inhibiting DNA replication (Sliva, 2003). 

With all the studies conducted so far, polysaccharides have been suggested to have an 

ability to enhance the host’s defense system in both antioxidant and antitumor abilities 

(Mizuno et al., 1995a; Pan et al., 2013). The work performed so far, especially in G. 

lucidum, indicates that fractions of polysaccharides were not as effective as their 

equivalent dose in the crude extract of the whole mushroom, suggesting that the 
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bioactivity of this medicinal mushroom may be due to the synergistic effects of multiple 

compounds, such as triterpenes (Liu et al., 2002). This idea is supported by some 

studies, such as the study in which a polysaccharidic mixture containing isoflavone 

aglycones produced from the cultured mycelia of G. lucidum inhibited angiogenesis in 

BALB/c mice with implanted chambers containing a suspension of colon-26 cells 

(Miura et al., 2002).  

 

5. Antimicrobial Ganoderma polysaccharides 

5.1. Medicinal mushrooms as antimicrobial agents 

Fungi are well known for the production of important antibiotic compounds, such as 

penicillin. However, the occurrence of antibiotics in the class of fungi known as 

mushrooms is less well documented (Miles and Chang, 1997). Mushrooms belong to 

the kingdom of Fungi, they were thought to have weak antifungal activities (Mizuno, 

1995) and therefore have rarely been investigated for their bioactivity as antifungal 

agents. It is only recently that they have become of interest due to their secondary 

metabolites exhibiting a wide range of antimicrobial activities. 

Ganoderma species have been widely investigated for their therapeutic properties as 

antitumor and antiviral agents but have been far less investigated as a source of new 

antibacterial agents. A review by Gao et al. (2003a) on the antibacterial and antiviral 

value of Ganoderma species supported this observation, as there were few citations on 

research in this area. It is interesting to note that the majority of antibacterial 

investigations on Ganoderma species have been performed on the fruiting body and 

there are relatively few on extracts from the liquid cultivated mycelium. 

 

5.2. Current antimicrobial research on Ganoderma species  
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Western and Eastern medicine have adopted different regulatory systems for herbal and 

mushroom preparations (Wasser, 2011). Western medicine has made little use of 

medicinal mushroom products partly due to their complex structure and lack of 

acceptable pharmacological purity (Sullivan et al., 2006). In the search for 

microbiologically active compounds from Ganoderma species, the majority of research 

has been performed on extracts from the fruiting body and mycelium, and there are a 

few studies on antimicrobial activity of isolated fractions or pure polysaccharides. It 

appears that there are a number of biologically active compounds to be found in the 

mycelium and fruiting body, but antimicrobial activity evaluation of chemically 

characterized polysaccharides is very limited. It could be only noted that (1→3)-β-D-

glucan with (1→6)-β-D branches could act as antimicrobial agent in vivo. 

 

5.3. Antibacterial activity of Ganoderma polysaccharides 

The antibacterial activity of polysaccharides from G. lucidum fruiting bodies was 

reported (Table 3) (Skalicka-Woźniak et al., 2012). Thirty six samples were analyzed. 

Four strains of G. lucidum (GL01, GL02, GL03 and GL04) were cultivated on the 

growth substrates of three different sawdust types: birch (Bo), maple (Kl) or alder (Ol) 

amended with wheat bran in three different concentrations: 10, 20 and 30% (w/w). Even 

though the richest in polysaccharides was the GL01 strain, the highest yields of the 

polysaccharides were observed in the GL04Kl3 sample (112.82 mg/g of dry weight). 

The antibacterial activity of the polysaccharides was determined in vitro using the 

micro-dilution broth method. A panel of eight reference bacterial strains was used and 

all the tested polysaccharides showed moderate antibacterial activity. The Micrococcus 

luteus American Type Culture Collection (ATCC) 10240 strain was the most sensitive 

with minimal inhibitory concentrations (MICs) 0.63-1.25 mg/mL. Nevertheless, the 
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analyzed polysaccharides exhibited inhibitory effects against all the bacterial strains 

tested, with MICs ranging from 0.62 to 5.0 mg/mL. The minimal bactericidal 

concentrations (MBCs) of the samples were comparable (2.5 or 5.0 mg/mL). Only slight 

differences were observed between MICs and MBCs of the polysaccharide samples 

obtained from the strains of the G. lucidum fruiting bodies, and the ones obtained from 

the sawdust cultivation substrates. The low MBC/MIC ratios suggest that 

polysaccharides acted as bactericidal agents. The screening of antibacterial activity 

indicates that there were no significant differences in the antimicrobial activity between 

the polysaccharides obtained from the four strains of G. lucidum fruiting bodies and the 

ones obtained from different sawdust cultivation substrates. The polysaccharides tested 

exerted the strongest inhibitory effect towards M. luteus (MIC 0.62 or 1.25 mg/mL) 

(Skalicka-Woźniak et al., 2012). 

In another study, G. lucidum polysaccharides were extracted with boiling water, and 

further tested for antimicrobial activity against three plant pathogens (Erwinia 

carotovora, Penicillium digitatum, Botrytis cinerea) and five food harmful 

microorganisms (Bacillus cereus, Bacillus subtilis, Escherichia coli, Aspergillus niger 

and Rhizopus nigricans) by the agar diffusion method. The results showed that the 

polysaccharide liquid had a powerful inhibitory effect on E. carotovora, a weak 

inhibitory effect on P. digitatum and a nearly non-inhibitory effect on B. cinerea, for the 

plant pathogens. Regarding food harmful microorganisms, the polysaccharide liquid had 

a strong inhibitory effect on B. subtilis and B. cereus, a weak inhibitory effect on E. coli 

and A. niger, and a nearly non-inhibitory effect on R. nigricans (Bai et al., 2008). 

Polysaccharides from the mycelia and basidiocarp of Ganoderma applanatum were 

found to possess activity against Acitenobacter aerogenes, Acrobacter aerogenes, 

Arthrobacter citreus, Bacillus brevis, B. subtilis, Corynebacterium insidiosum, E. coli, 
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Proteus vulgaris, Clostridium pasteurianum, Micrococcus roseus, Mycobacterium 

phlei, Sarcina lutea and Staphylococcus aureus (Bhattacharyya et al., 2006). 

The extracellular polysaccharides obtained from Ganoderma formosanum culture 

medium were separated into three major fractions, PS-F1, PS-F2, and PS-F3, based on 

their molecular size (Wang et al., 2011a). Although the different monosaccharide’s 

composition in each fraction, D-mannose was the major constituent among all fractions, 

and in the two major fractions PS-F2 and PS-F3, the second most abundant sugar was 

D-galactose, followed by D-glucose. G. formosanum thus synthesizes a different form 

of polysaccharide as compared with other Ganoderma species (e.g., G. lucidum) in 

which D-glucose is usually the major component (Wang et al., 2002). These results 

show that D-mannose and D-galactose are the major constituents of G. formosanum 

polysaccharides. The differences in carbohydrate composition among fungal 

polysaccharides could be due to strain variations or caused by different ways of 

cultivation (solid-state culture versus liquid-state culture). The polysaccharides were 

produced in a submerged mycelial culture. The fungal cell wall polysaccharides 

synthesized under different growth conditions may exhibit different biological effects. 

Methods of extraction may also affect the polysaccharides obtained from G. lucidum 

fruiting bodies, which could contain either β-1,3-glucans or α-1,4-linked polymannose 

(Miyazaki and Nishijima, 1981). It appears that both the sugar components and 

structures of the hetero-polysaccharides in the fungal cell wall are diverse and 

complicated. It is suggested that the extracellular polysaccharides of G. formosanum 

(PS-F2, and perhaps PS-F1 and PS-F3) have the potential to be used as immuno-

stimulatory and antibacterial agents against Listeria monocytogenes injected in mice. 

In the study of antibacterial activity of exopolysaccharide (EPS) from basal medium and 

malt medium obtained from different mushrooms, G. lucidum EPS showed the highest 
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activity against the growth of B. cereus among other bacterial species (23 ± 0.61 mm 

and 18 ± 0.38 mm, respectively) (Mahendran et al., 2013).  

Ganoderma polysaccharides have not been much studied regarding antimicrobial 

properties. Nevertheless, the available studies report mainly their activity against several 

pathogenic bacteria. Several authors reported antimicrobial activity of G. lucidum 

different extracts but not isolated polysaccharides (Sheena et al., 2003; Quereshi et al., 

2010). Heleno et al. (2013) reported strong antibacterial, antifungal and also 

demelanizing properties of G. lucidum extract, even better than the standards ampicillin 

and streptomycin in some cases. Thus, polysaccharides isolated from these species 

should also be analyzed since they can have a strong participation in the antimicrobial 

properties exhibited by G. lucidum.   

 

6. Ganoderma polysaccharides with non-reported bioactivity 

Polysaccharides from Ganoderma species with previously non-reported bioactivity are 

briefly discussed here. The reported polysaccharides with non-tested bioactivity belong 

to alkali-soluble polysaccharides and/or water insoluble polysaccharides and water 

soluble polysaccharides (Table 4).  

The methods for isolation, purification and identification are given in Table 4, as well 

as sugars composition and molecular weight. A water insoluble, but alkali-soluble 

glucan G-A was previously isolated from G. japonicum. (Ukai et al., 1982). Chen et al., 

(1998) have isolated water-insoluble glucans, namely GL4-1 and GL4-2 from the 

fruiting bodies of G. lucidum. A water soluble and low branched polysaccharide (SGL-

III) was isolated from the spores of G. lucidum (Zhao et al., 2005). A neutral, water 

soluble, heteropolysaccharide (GLPS3) was isolated from germinating spores of G. 

lucidum (Zhang et al., 2006). A water soluble β-glucan (DESSK5) was reported in the 



	
   35	
  

basidiocarp of G. resinaceum (Amaral et al., 2008). A water soluble polysaccharide, 

heteropolysaccharide LZ-C-1 was isolated from G. lucidum (Ye et al., 2009). Neutral 

polysaccharide, soluble in water was isolated by Huang et al., (2011) from G. lucidum 

fruiting body. Novel heteropolysaccharides (GL-1 to GL-5) were also isolated from the 

fruiting bodies of G. lucidum (Wang et al., 2011a). Finally, a novel water soluble and 

neutral β-D-glucan (GLSA50-1B) was isolated from the spores of G. lucidum (Dong et 

al., 2012). 

The chemical features of the described polysaccharides with non-reported bioactivity 

are similar to the ones described for the polysaccharides with some reported 

bioactivities. These substances might be further used for evaluation of its biological 

potential, as their chemical properties are promising. 

 

7. Concluding remarks  

The beneficial health properties of Ganoderma species have been attributed to a wide 

variety of bioactive components present in this genus, such as polysaccharides. Most of 

the studies to date have focused on this class of compounds, since they have a 

considerable capacity for carrying biological information due to their high structure 

variability.   

Over the last three decades, many polysaccharides from Ganoderma species have been 

extracted by different methodologies according to their structure, water-solubility and 

mainly according to their cell wall structure. Therefore, polysaccharides have been 

extracted mostly by hot water and have been isolated and identified by different 

chromatographic techniques, such as mass spectroscopy or nuclear magnetic resonance. 

The α- or β-(1→3)-, (1→6)-glucans and hetero-polysaccharides with different 
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combinations of sugars have been extracted from different species, having molecular 

weights ranging from thousands to millions of Daltons. 

Polysaccharide structural features and bioactivities have been widely explored. These 

molecules have antioxidant, antitumor and antibacterial potential, which has been 

shown both in vitro and in vivo. These properties seem to be particularly related to 

polysaccharide molecular weight, level of branching, and water solubility. In all the 

studies reported, when a structure-activity relationship is considered, some 

characteristics of the polysaccharides may vary (e.g., molecular weight). For example, if 

the low molecular weight polysaccharides appeared to have higher antioxidant potential, 

more recent studies established that polysaccharides with a higher molecular weight 

also have this activity, as well as antitumor potential.  Concerning the sugars 

composition, homo and heteropolysaccharides composed by different sugars such as 

mannose, glucose, rhamnose, galactose, xylose, arabinose, fructose, or fucose and 

linked by β-glycosidic linkages revealed high bioactivity. So far, there is no uniformity 

in the structural features and characteristics of the bioactive polysaccharides. Moreover, 

besides the natural isolated polysaccharides, the polysaccharide-protein or –peptide 

complexes also present bioactivity, as well as polysaccharidic extracts or fractions, in 

which synergistic processes with other molecules improve the potential.  

Nevertheless, one feature seems to be common, and appears to be in the basis of the 

polysaccharide bioactivity: the glycosidic linkages. Indeed, features such as the (1→3)-

β-linkages in the main chain of the glucan and additional (1→6)-β- branch points, 

display higher bioactivity potential.  

Since these molecules were isolated and submitted to biological assays without 

complete chemical characterization, especially in the evaluation of antioxidant and 

antimicrobial activities, it is difficult to conclude what are the key chemical 
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characteristics for the bioactivities discussed. Accordingly, the best molecular weights 

cannot be specified, as also the sugars’ composition or level of branching that confer 

higher antioxidant, antitumor or antimicrobial potential to polysaccharides. Perhaps it is 

this variability that makes them such interesting compounds. With the reported studies, 

it can only be stated that the antioxidant properties of Ganoderma polysaccharides, 

particularly the radicals scavenging activity, seem to be more related with the increase 

of antioxidant enzymes (SOD, CAT and GSH-Px) activity, while the antitumor potential 

seems to be particularly related to the host’s immunity function, by exerting a series of 

immuno-enhancement properties, such as cytokine production. In some cases, the 

antitumor activity has been related to the antioxidant properties, since some 

polysaccharides extracted from G. lucidum have been shown to be effective in 

preventing DNA damage, suggesting a possible chemopreventive potential.  

There is not much data regarding the antimicrobial activity of polysaccharides from 

Ganoderma. However, the interest in this field has recently increased due to the 

discovery of secondary metabolites isolated from fungi, which have antimicrobial 

potential. Indeed, some polysaccharides from Ganoderma species have antibacterial 

activity, inhibiting bacterial growth or inducing death of pathogenic bacteria.  

Based on all the results herein reviewed, and although further testing is necessary (e.g., 

human clinical trials), the scientific evidence available to date suggests that Ganoderma 

may become a good health food supplement, namely for cancer patients. Nevertheless, 

the complete chemical characterization of the polysaccharides is of extremely 

importance so that it could be possible to better understand the main features 

responsible for their powerful abilities. Moreover, with that knowledge the investigation 

could be better conducted in order to develop new nutraceuticals and pharmacological 
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formulations such as the existing ones with G. lucidum extracts, glycoproteins or 

polysaccharides (Wang et al., 2006; Wong et al., 2006; Tu et al., 2011). 
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Table 1: Analytical procedures, chemical characterization and antioxidant activity of polysaccharides isolated from Ganoderma lucidum. 

Origin 
 

Extraction/isolation 
procedure 

Identification 
technique 

Polysaccharide 
type 

Main glycosidic 
bonds 

Sugars 
composition 

Molecular  
weight 

Antioxidant 
activity assays 

Antioxidant activity  
values 

References 

China 
(Fruiting body) 
(cultivated) 

Ultrasonic extraction; Sevag 
method; ethanol 
precipitation; ultrafiltration 
membranes 

HP-GPC; 
HPLC-FID; GC 

Heteroglucans 
(GLP, GLP1, 
GLP2, GLP3, 
GLP4) 
 

na Mannose; 
rhamnose; 
glucose; 
Galactose 

GLP- n.a.; 
GLP1- ˃10KDa; 
GLP2- 8-10 KDa; 
GLP3- 2.5-8 KDa; 
GLP4- ˂ 2.5 KDa 

 In vitro 
DPPH scavenging 
activity; 
Reducing power 
(RP); 
Fe2+chelating 
activity 
ORAC 
 

DPPH EC50 : GLP 0.28 mg/mL; GLP1 0.27 
mg/mL; GLP2 0.34 mg/mL; GLP3 0.42 
mg/mL; GLP4  ˃ 0.8 mg/mL 
 
RP EC50: GLP 0.42 mg/mL; GLP1 0.36 
mg/mL; GLP2 0.27 mg/mL; GLP3 0.36 
mg/mL; GLP4  ˃ 0.5 mg/mL 
 
Fe2+ EC50: GLP 0.10 mg/mL; GLP1 0.07 
mg/mL; GLP2 0.07 mg/mL; GLP3 0.06 
mg/mL; GLP4 0.058 mg/mL 
 
ORAC: GLP 1200  µmol trolox/g; GLP1 
1500 µmol trolox/g; GLP2 1780 µmol 
trolox/g; GLP3 1400 µmol trolox/g; GLP4 
1300  µmol trolox/g 

Ma et al., 2013 

China 
(Fruiting body) 
(cultivated) 

Hot water extraction; 
ethanolprecipitation; Sevag 
method; dialysis 

na na na na na In vivo 
SOD activity; 
GSH-Px activity; 
CAT activity; 
MDA levels 

200 mg/kg body weight increased the 
antioxidant activity of the enzymes and 
decreased the MDA levels in mice with 
exercise-induced oxidative stress 

Zhonghui et al., 
2013 

na 
(Mycelium) 
(cultivated) 

Ultrasonic assisted 
extraction; hydrolysis; Sevag 
method; ethanol 
precipitation; anion-exchange 
DEAE Sephadex A-50 
column; regenerated 
cellulose bag filter; dialysis 

 GC-MS- FID; 
FT/IR 

Heteroglucans 
(GLPI, GLPII, 
GLPIII, 
GLPIV) 

na GLPI- arabinose; 
rhamnose; xylose; 
mannose; glucose 
 
GLPII- arabinose; 
xylose; glucose 
 
GLPIII- arabinose; 
rhamnose; xylose; 
galactose; 
mannose; glucose 
 
GLPIV- 
arabinose; 
rhamnose; fucose; 
xylose; mannose; 
glucose 
 
 
 

na In vitro 
HO. scavenging 
activity; 
DPPH scavenging 
activity; 
Reducing power 
(RP); 
Fe2+chelating 
activity; 
ABTS scavenging 
activity; 
SOD-like activity 

HO. EC50: GLPI 1.25 mg/mL; GLPII 0.156 
mg/mL; GLPIII 0.156 mg/mL; GLPIV 
0.156 mg/mL 
 
DPPH EC50: GLPI 2.2 mg/mL; GLPII 1.25 
mg/mL; GLPIII 0.156 mg/mL; GLPIV 
0.156 mg/mL 
 
RP EC50: GLPI 9.00 mg/mL; GLPII 7.5 
mg/mL; GLPIII 5.00 mg/mL; GLPIV 3.00 
mg/mL 
 
Fe2+ EC50: GLPI - GLPIV ˃ 10.0 mg/mL;  
 
ABTS EC50 GLPI 7.5 mg/mL; GLPII ˃ 
10.0 mg/mL; GLPIII 2.00 mg/mL; GLPIV 
1.50 mg/mL 
 
SOD-like EC50: GLPI - GLPIV ˃ 10.0 
mg/mL 

Shi et al., 2013 

Taiwan Alkaline extraction; HPAEC; GC- LMG: β-1,3 Glucose 3.979 KDa In vitro 100 µg/mL increased the viability of cells Kao et al., 2012 
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(fruiting body) 
(na) 

hydrolysis; size-exclusion 
chromatography 

MS; NMR; 
MALDI-TOF 
MS 

Homoglucan MTT assay 
(RAW264.7 cells);  
ROS formation; 
nSMase and aSMase 
activities 
 

with H2O2-induced oxidative stress from 
40% to 80% and significantly reduced ROS 
formation 
 
nSMase inhibition: IC50 120  µg/mL; 
aSMase inhibition: IC50 100  µg/mL 

China 
(fruiting body) 
(na) 

Hot water extraction; D301R 
macroporous adsorption/ion 
exchange resin column; 
DEAE-Cellulose-32 column; 
gel filtration chromatography 

Size exclusion 
HPLC; 
methylation 
analysis; GC, 
GC-MS; EI-MS; 
IR spectra 

GLPL1: 
Homoglucan 
 
GLPL2: 
Heteroglucan 

β (1-3), (1-4) and 
(1-6) 
 

GLPL1: Glucose. 
 
GLPL2: Glucose; 
galactose, 
mannose 

GLPL1: 5.2 KDa; 
 
GLPL2: 15.4 KDa 

In vitro 
HO.scavenging 
activity; 
O2

.-scavenging 
activity;  
Fe2+chelating 
activity;  
Reducing power 
(RP); 
H2O2 scavenging 
activity 

HO. EC50: GLPL1 0.63 mg/mL; GLPL2 2.50 
mg/mL 
 
O2

.- EC50: GLPL1 2.12 mg/mL; GLPL2 10.0 
mg/mL 
 
Fe2+ EC50: GLPL1 6.0 mg/mL; GLPL2 ˃ 
10.0 mg/mL 
 
RP  EC50:  GLPL1-  GLPL2 ˃ 10.0 mg/mL 
 
H2O2 EC50: GLPL1 6.0 mg/mL; GLPL2  ˃ 
10.0 mg/mL 

Liu et al., 2010 

China 
(fruiting body) 
(cultivated) 

Hot water extraction; 
ethanolprecipitation; Sevag 
method; dialysis; 
precipitation with cetyl 
trimethyl ammonium 
hydroxide; DEAE cellulose 
column; anion exchange 
column of DEAE-Sepharose 
Fast Flow 

TLC Homopolysacch
aride 

na Mannose na In vivo 
SOD activity; 
CAT activity; 
GSH-Px activity; 
TAOC level; 
TBARS (MDA 
levels) 

300mg/kg body weight decreased MDA 
levels and increased SOD, CAT, GSH-Px 
activities and TAOC levels in rats with 
ovarian cancer 

YouGuo et al., 
2009 

China 
(fruiting body) 
(cultivated) 

Hot water extraction; 
ethanolprecipitation; Sevag 
method; dialysis; 
precipitation with cetyl 
trimethyl ammonium 
hydroxide; DEAE cellulose 
column; anion exchange 
column of DEAE-Sepharose 
Fast Flow. 

TLC Homopolysacch
aride 

na Mannose na In vitro 
O2

.-scavenging 
activity;  
HO.scavenging 
activity; 
DPPH scavenging 
activity. 
 
In vivo  
SOD activity; 
CAT activity; 
GSH-Px activity 

O2
.- EC50: 1.5 mg/mL 

 
HO. EC50: 2.2 mg/mL 
 
DPPH  EC50:  1.0 mg/mL 
 
 
 
300 mg/kg  body weight increased SOD, 
CAT and GSH-Px activities in rats with 
cervical carcinoma 
 

XiaoPing et al., 
2009 

China 
(fruiting body) 
(cultivated) 

Hot water extraction; 
ethanolprecipitation; Sevag 
method; dialysis 

na Heteroglucan β-  D- Rhamnose; D- 
xylose; D-
fructose; D- 
galactose; D- 
mannose; D- 

0.5848 KDa In vitro 
TBARS; 
LOOH; 
Protein carbonyls 
formation; 

60 mg/mL decreased  levels of TBARS, 
LOOH and protein carbonyls formation, 
and increased protein thiols formation and 
SOD, GSH-Px, CAT activities in 
mitochondria with  

Li et al., 2007 



	
   53	
  

 
ABTS – 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); aSMase – acidic SMase; CAT – Catalase; DEAE – Diethylaminoethanol; 
DPPH – 2,2-diphenyl-1-picrylhydrazyl; EC50, IC50 – Concentration of polysaccharide providing 50% of antioxidant activity; EI – Electron 
ionization; FID – Flame ionization detector; FT-IR – Fourier transform infrared spectrophotometer; GC – Gas chromatography; GSH-Px –
Glutathione peroxidase; H2O2 – Hydrogen peroxide; HO. – Hydroxyl radical; HPAEC – High-performance anion-exchange chromatography; HP-
GPC – High-performance gel permeation chromatography; HPLC – High performance liquid chromatography; IR – Infrared; LOOH – Lipid 
hydroperoxides; MALDI-TOF – Matrix assisted laser desorption ionization-time of flight; MDA – Malondialdehyde; MS – Mass spectrometry; 
MTT – 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide; NMR – Nuclear magnetic resonance; nSMase – Neutral SMase; O2

.- 
– Superoxide radical; ORAC – Oxygen radical absorbance capacity; RAW 264.7 – Mouse leukaemic monocyte macrophage cell line; ROS – 
Reactive oxygen species; RP – Reducing power; SMase – Sphingomyelinase; SOD – Superoxide dismutase; TAOC – Total antioxidant capacity; 
TBARS – Thiobarbituric acid reactive substances; TLC – Thin layer chromatography.na –data not available.   

glucose Protein thiols 
formation; 
SOD activity; 
CAT activity; 
GSH-Px activity 

γ-irradiation induced oxidative stress 
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Table 2: Analytical procedures, chemical characterization and antitumor activity of polysaccharides isolated from Ganoderma species. 

Ganoderma 
species Origin Extraction/isolation 

procedure 

Identification 
technique 

Polysaccharide 
type 

Main glycosidic 
bonds 

Sugars 
composition 

Molecular 
weight 

Antitumor activity 
assays/ Dose 

Antitumor model 
used in the study 

Antitumor activity 
values 

References 

G. lucidum 
(fruiting body) 

Japan 
(cultivated) 

Hot water extraction; 
ethanol precipitation; 
Sevag method; DEAE-
cellulose column 
chromatography with 
sodium hydrogen 
carbonate 

PC; GLC; 
IR;13C NMR 

Branched 
heteroglucan 
(arabinoxyloglu
can) 

β-D-(1→3), β-D-
(1→6), and 
(1→4)-α- and -β- 

Glucose; 
xylose; 
arabinose 

40000 In vivo 
Tumorigenicity 
assay: calculation of 
the tumor inhibition 
ratio (%) in ICR 
mice 
5-20 × 10 (mg/Kg × 
day)  

Sarcoma 180 solid 
tumor 

42.0 – 98.5 % of 
inhibition ratio 

Miyazaki 
and  
Nishijima, 
1981 

G. lucidum 
(fruiting body) 

Japan 
(cultivated) 

First extraction with 
cold PBS (separation 
of the soluble and 
insoluble fractions). 
Hot water, and cold 
and hot 1M sodium 
hydroxide; treatment 
with cetyl pyridinium 
chloride (CPC) and 
glucoamylase; 
hydrolysis with acid 
 

GLC; PC; 
HPLC 

Water-soluble 
heteropolysacch
arides 

 Glucose; 
galactose; 
mannose; 
xylose; 
arabinose; 
fucose 

Na In vivo 
Tumorigenicity 
assay: calculation of 
the tumor inhibition 
ratio (%) in IRC-
JCL mice 
10 × 10 (mg/Kg × 
day) 

Sarcoma 180 solid 
tumor 

na Sone et al., 
1985 

Water-insoluble 
glucans 

(1→3)-β-D-
glucan with a few 
short 
(1→4)-linked 
glucosyl units 

Glucose Na 10.9 – 97.9 % of 
inhibition ratio 

G. lucidum 
(growing 
culture of 
mycelium) 

Japan 
(cultivated) 

Ethanol precipitations/ 
Toyopearl HW-65S 
column 
chromatography 
 

GLC; PC; 
HPLC 

Branched 
homoglucan 

(1→3)-β-D-
glucan 

Glucose Na In vivo 
Tumorigenicity 
assay: calculation of 
the tumor inhibition 
ratio (%) in IRC-
JCL mice 
10 × 10 (mg/Kg × 
day) 

Sarcoma 180 solid 
tumor 

91.6 % of inhibition 
ratio   

Sone et al., 
1985 

G. lucidum 
(fruiting body) 

na Hot water followed by 
ethanol precipitation 

Na Branched 
homoglucan 

(1→3)-β-D-
glucan with 
(1→6)-β-D 
branches 
 

Glucose GLPO < 
12.000 
 GLP I > 
12.000 

In vivo 
Tumorigenicity 
assay  (BALB/c 
mice; Details not 
available) 
 

Sarcoma 180 solid 
tumor 

Induced a cascade of 
immunomodulatory 
cytokines 

Ooi et al., 
2002  

G. tsugae 
(mycelium) 

China 
(cultivated) 

Immersion  in 0.2 M 
sodium phosphate 
buffer (pH 7.0); Sevag 
method; H2O2; 
dialysis; isolation with 
phosphate buffer, 

IR; GC; 
13C NMR 

Heteroglucans (1→3)-β-D-
glucans and 
(1→4)-α-D-
glucans; and 
(1→6)-branched 
(1→3)-β-D-

Rhamnose; 
fucose; 
xylose; 
mannose; 
galactose; 
glucose; N-

GTM3- 
465×10-4 
GTM4-
468×10-4 
GTM5- 
176×10-4 

In vivo 
Tumorigenicity 
assay: calculation of 
the tumor inhibition 
ratio (%) and   
enhancement of 

Sarcoma 180 solid 
tumor 

12.9– 55.06 % of 
inhibition ratio 
11.5 – 39.1 %  
enhancement of 
body weight ratio 

Peng et al., 
2005 
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BALB/c mice – albino laboratory-bred strain of the house mouse from which a number of common sub-strains are derived; DEAE – 
Diethylaminoethyl; GC – Gas chromatography; GLC – Gas liquid chromatography; HPGFC – High performance gel filtration chromatography; 
HP-GPC – High performance gel permeation chromatography; HPLC – High performance liquid chromatography; HPLC-FID – High 
performance liquid chromatography coupled to a flame ionization detector; ICR mice – Imprinting control regions, strain of albino mice 

distilled water and 0.5 
M sodium hydroxide 

glucan acetylglucosa
mine 

GTM6- 
161×10-4 

body weight ratio 
(%) in BALB/c mice 
5-37.5 × 10 (mg/Kg 
× day) 

G. lucidum 
(fruiting body) 

China 
(cultivated) 

Extraction with 95% 
ethanol; ultrasonic-aid 
extraction (UAE); 
DEAE cellulose-52 
chromatography and 
Sephadex G-100 size-
exclusion 
chromatography 

Spectrophotome
try (UV); 
HPGFC; 
IR 

Heteropolysacc
haride 

na Glucose; 
galactose; 
mannose; 
rhamnose; 
fucose 

GP-1- 
1.926 KDa 
GP-2- 1086 
KDa 

In vitro 
MTT assay 
5, 25, 50 µg/mL 

Human breast 
cancer cell line 
(MDA-MB-231) 

0.347–0.352 (OD 
values at 490 nm) 
corresponding to 
inhibition ratios of 
0.50 – 6.72 %; 
Immunomodulatory 
activity (increasing 
macrophage cells 
proliferation) 

Zhao et al., 
2010 

G. lucidum 
(mycelium) 

China 
(cultivated) 

Hot water; ethanol 
precipitation; Sevag 
method; dialysis 

IR; UV; 
NMR 

Heteropolysacc
haride 

α-D-Glc(1→6), α-
D-Glc, α-D-Man 
(rhamnose and 
arabinose residues 
in the side chain) 

Rhamnose; 
arabinose; 
mannose; 
glucose; 
galactose 

3.500 KDa In vitro and in vivo 
MTT assay; Cell 
cycle assay by Flow 
cytometry; 
Tumorigenicity 
assay:  calculation 
of the tumor 
inhibition ratio (%) 
in ICR mice 
500, 1000, 2000  
µg/mL (for the in 
vitro assays) 
0.5 and 2.0 × 8 
(mg/Kg × day) (for 
the in vivo assays) 
 

Human 
hepatocarcinoma 
cell line (HepG2) 
Tumour xenografts 
in ICR mice 

0 – ≈ 35 % of 
inhibition rate (in 
vitro) 
31.39–55.02 % of 
inhibition rate (in 
vivo); 
Apoptosis enhanced 
by supplemental 
dose of the 
intracellular 
polysaccharides 
 

Liu et al., 
2012;  
Zhang et 
al., 2012 

G. lucidum 
(fruiting body) 
 
 

China 
(cultivated) 

Pretreatment with 
ethanol; Sevag 
method; Ultrasonic 
cell 
disruption; 
ultrafiltration 

HP-GPC; 
HPLC-FID; GC 

Heteroglucans na Mannose; 
Rhamnose; 
glucose; 
galactose 

GLP- na; 
GLP1-
˃10KDa; 
GLP2- 8-10 
KDa; 
GLP3- 2.5-
8 KDa; 
GLP4- ˂ 
2.5 KDa 

In vitro 
MTT assay 
0.05, 0.25 and 1 
mg/mL 

Adrenal gland from 
rat -PC12 cell line 

≈12.5 - ≈52.5 % of 
inhibition activity 

Ma et al., 
2013 
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originating in Switzerland; IRC-JCL – Another strain of albino mice originating in Switzerland; IR – Infrared spectroscopy; MTT – 3-[4,5-
dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide; NMR – Nuclear magnetic resonance spectroscopy; OD – Optical Density; PBS – 
Phosphate buffered saline; PC – Paper chromatography; UV – Ultraviolet. na –data not available.   
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Table 3: Analytical procedures, chemical characterization and antimicrobial activity of polysaccharides isolated from Ganoderma lucidum. 
 

DEAE – Diethylaminoethanol. na –data not available.   
*Branched homoglucan; (1→3)-β-D-glucan with (1→6)-β-D branches; composed by D-mannose, D-galactose, D-glucose, L-arabinose, L-
fucose, D-fructose and L-rhamnose.  
 
 
 
 
 

Ganoderma species Origin Extraction/isolation 
procedure 

Antimicrobial activity assay Microorganisms used Type of assay Reference 

G. lucidum 
 

Poland 
(cultivated) 

Hot water followed by 
ethanol precipitation/ 
DEAE-cellulose column 
chromatography 

 
Microdilution method 

Staphylococcus epidermidis, S.aureus,  
Bacillus subtilis, Micrococcus luteus Escherichia coli 
Klebsiella pneumonia, Pseudomonas aeruginosa 
Proteus mirabilis 

In vitro Skalicka-Woźniak et al., 2012 

G.lucidum China 
(wild) 

Hot water Agar diffusion  method Erwinia carotovora,Penicillium digitatum, 
Botrytis cinerea, Bacillus cereus 
Bacillus subtilis, Escherichia coli 
Aspergillus niger, Rhizopus nigricans 

In vitro Bai et al., 2008 

G. applanatum India 
(wild) 

na Cup diffusion method Acitenobacter aerogenes 
Acrobacter aerogenes Arthrobacter citreus,  
Bacillus brevis, B.subtilis Corynebacterium insidiosum  
Escherichia coli, Proteus vulgaris 
Clostridium pasteurianum, Micrococcus roseus 
Mycobacterium phlei, Sarcina lutea 
Staphylococcus aureus 

In vitro Bhattacharyya et al., 2006 

G.formosanum 
(mycelia)* 
 

Taiwan 
(cultivated) 
 

Ethanol extraction to 
allow the precipitation 
dissolution in boiled 
Tris/HCl buffer, the 
sample 
was fractionated on a 
Sepharose CL-6B gel 
filtration 
column 

na Listeria monocytogenes In vivo 
on mice; 
enhanced microbial 
killing, which 
is mostly mediated by 
monocytes/macrophages 
and neutrophils 

Wang et al., 2011a 

G.  lucidum 
(mycelia) 

India 
(cultivated) 

na Well diffusion method 
 

Escherichiacoli, Staphylococcus aureus 
Proteus sp, Bacillus subtilis, Pseudomonas aeroginosa 
Klebsiella sp ,Bacillus cereus 

In vitro Mahendran et al., 2013 
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Table 4: Polysaccharides isolated from Ganoderma species without reported bioactivity. 
 

Ganoderma 
species 

Origin Extraction/isolation 
procedure 

Identification 
technique 

Polysaccharide type Main glycosidic bonds Sugars 
composition 

Molecular 
weight 

References 

G. japonicum 
(fruiting body) 

Japan 
(wild) 

Hot dichloromethane and hot 
methanol;  
Hot water; Dialysis; gel 
filtration on Sepharose CL-
4B 

GLC-MS; 1H-
NMR; IR; PC  

Alkali-soluble glucan β -(1→3)-linked D-
glucopyranosyl residues 
with side-chains of single, 
β  - (1→6)-linked D-
glucopyranosyl groups 

Glucose; 
laminarabiose 

82000 Ukai et al., 
1982 

G. lucidum 
(fruiting body)  

China 
(cultivated) 

PBS; Ethanol precipitations; 
1N NaOH 
 

13C-NMR;1H-
NMR; IR 

Water insoluble 
glucans 

(1→3)- α -D-glucans Glucose GL4-1 - 
1.95x105;  
GL4-2 – 
1.33x10-4 

Chen et al., 
1998 

G. lucidum 
(spores) 

na 
(cultivated) 

Hot water followed by 
ethanol precipitation 

13C-NMR; GC; 
GC-MS; IR 

Water soluble 
polysaccharide 

(1→3)-linked-Glc; 
(1→6)-linked-Gal; 
(1→4)-linked-Gal; 
(1→6)-linked-Glc 

Glucose; 
galactose 

1.41x104 Zhao et al., 
2005  

G. tlucidum 
(germinating 
spores) 

na 
(cultivated) 

Deproteinization by Sevag 
method and frozen-thaw 
method, fractionated by 
ultrafiltration and gel 
chromatography on CL-6B 
column. 

GC; HPLC; IR; 
NMR  

Heteropolysaccharide Na Glucose; 
galactose 

1.41x105 Zhang et al., 
2006 

G. resinaceum 
(fruiting body) 

Brazil 
(wild) 

Chloroform-methanol; Hot 
water; dialysis;  Freeze-
thawing; ultrafiltration 

GC-MS; GPC;  
NMR  

Water soluble glucan (1→3)-linked  β -glucan Glucose; 
mannose; 
galactose; 
xylose 

2.6x104 Amaral et al., 
2008 

G. lucidum 
(fruiting body) 

China 
(wild) 

Hot water followed by 
ethanol precipitation; 
ultrafiltration 

FT-IR;HPAPC;  
NMR  

Water soluble 
polysaccharide 

1,6-disubstituted-α-
galactopyranosyl, 1,2,6-
trisubstituted- 
α-galactopyranosyl, 1,3-
disubstituted-β -
glucopyranosyl and 1,4,6-
trisubstituted-β -
glucopyranosyl 
residues  

Fucose; 
glucose; 
galactose 

7000Da Ye et al., 2009 

G. lucidum 
(fruiting body) 

China 
(cultivated) 

Utrasonic/microwave 
assisted extraction 

FT-IR; GC-MS; 
HPSEC; NMR 

Water soluble neutral 
polysaccharide 

Backbone: 1,4-
disubstituted- β -
glucoseopyranose and 

Glucose; 
galactose 

2.5x106kDa Huang et al., 
2011 
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1,4,6-trisubstituted- 
β –glucoseopyranosyl; 
Branched chains: 1,6-
disubstituted- β -
glucopyranosyl and 1,4- 
disubstituted- β–
galactoseopyranosyl 

G. lucidum 
(fruiting body) 

China 
(cultivated) 

Ethyl-acetate; Sevag method; 
Dialysis 

FT-IR; GC-MS;  
NMR  

Water soluble 
Heteropolysaccharides 

(1→4)-galactan 
heteropolysaccharide; 
(1→3)-glucan; 
1,4,6-glucan, (1→3)-
galactan, (1→6)-galactan, 
(1→4)-grabinan, 
(1→3)-mannan, and/or 
(1→4)-xylan linkages 

glucose, 
galactose, 
mannose, 
arabinose 

GL-I – 6.1x104;  
GL-V – 
10.3x104 

Wang et al., 
2011 

G. lucidum  
(spores) 

China 
(cultivated) 

Hot-water extraction, graded 
ethanol precipitation, anion-
exchange chromatography 
 

GPL; HPGPC; 
NMR 

Water soluble glucan Backbone: 1,6-linked β -
D-Glcp; 
Side chain: 1,4-linked 
Glcp residues 

Glucose 103 kDa Dong et al., 
2012 

 
FT-IR – Fourier transform infrared spectrophotometer; GC- Gas chromatography; GC-MS – Gas chromatography coupled to mass spectrometry; 
GLC-MS – Gas liquid chromatography coupled to mass spectrometry; GPC – Gel permeation chromatography; HPGPC – High performance gel 
permeation chromatography; HPLC – High performance liquid chromatography; HPSEC – High pressure size exclusion chromatography; IR – 
Infrared spectroscopy; NMR – Nuclear magnetic resonance spectroscopy; PC – Paper chromatography; na –data not available.   
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