139 research outputs found

    Electrochemical migration of Sn and Sn solder alloys: a review

    Get PDF
    Sn and Sn solder alloys in microelectronics are the most susceptible to suffer from electrochemical migration (ECM) which significantly compromises the reliability of electronics. This topic has attracted more and more attention from researchers since the miniaturization of electronics and the explosive increase in their usage have largely increased the risk of ECM. This article first presents an introductory overview of the ECM basic processes including electrolyte layer formation, dissolution of metal, ion transport and deposition of metal ions. Then, the article provides the major development in the field of ECM of Sn and Sn solder alloys in recent decades, including the recent advances and discoveries, current debates and significant gaps. The reactions at the anode and cathode, the mechanisms of precipitates formation and dendrites growth are summarized. The influencing factors including alloy elements (Pb, Ag, Cu, Zn, etc.), contaminants (chlorides, sulfates, flux residues, etc.) and electric field (bias voltage and spacing) on the ECM of Sn and Sn alloys are highlighted. In addition, the possible strategies such as alloy elements, inhibitor and pulsed or AC voltage for the inhibition of the ECM of Sn and Sn solder alloys have also been reviewed

    Metagenomic Next-Generation Sequencing (mNGS) for the Diagnosis of Pulmonary Aspergillosis

    Get PDF
    The diagnosis of pulmonary aspergillosis is a critical step in initiating prompt treatment and improving patients’ prognosis. Currently, microbiological analysis of pulmonary aspergillosis involves fungal smear and culture, serum (1,3)-β-D-glucan (G) or galactomannan (GM) tests, and polymerase chain reaction (PCR). However, these methods have limitations. Recent studies have demonstrated that polymorphisms in pentraxin3 (PTX3), a soluble pattern recognition receptor, are associated with increased susceptibility to invasive aspergillosis. mNGS, a new microbial diagnostic method, has emerged as a promising alternative. It has high sensitivity in identifying pulmonary aspergillosis and can accurately distinguish species. Additionally, it outperforms other methods in detecting mixed infections and instructing the adjustment of antimicrobial treatments. As a result, mNGS has the potential to be adopted as the gold standard for the diagnosis of pulmonary aspergillosis

    Dissolution of cellulose in ionic liquid–DMSO mixtures : roles of DMSO/IL ratio and the cation alkyl chain length

    Get PDF
    The dissolution behavior of cellulose in the mixtures of dimethyl sulfoxide (DMSO) and different ionic liquids (ILs) at 25 °C was studied. High solubility of cellulose was reached in the mixtures of ILs and DMSO at mole fractions of 1:2, 1:2, and 1:1 for 1-butyl-3-methylimidazolium acetate, 1-propyl-3-methylimidazolium acetate, and 1-ethyl-3-methylimidazolium acetate, respectively. At high DMSO/IL molar ratios (10:1–2:1), a longer alkyl chain of the IL cation led to higher cellulose solubility. However, shorter cation alkyl chains favored cellulose dissolution at 1:1. Rheological, Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR) measurements were used to understand cellulose dissolution. It was found out that the increase of the DMSO ratio in binary mixtures caused higher cellulose solubility by decreasing the viscosity of systems. For cations with longer alkyl chains, stronger interaction between the IL and cellulose and higher viscosity of DMSO/IL mixtures were observed. The new knowledge obtained here could be useful to the development of cost-effective solvent systems for biopolymers

    A Macromolecular Approach to Eradicate Multidrug Resistant Bacterial Infections while Mitigating Drug Resistance Onset

    Get PDF
    Polymyxins remain the last line treatment for multidrug-resistant (MDR) infections. As polymyxins resistance emerges, there is an urgent need to develop effective antimicrobial agents capable of mitigating MDR. Here, we report biodegradable guanidinium-functionalized polycarbonates with a distinctive mechanism that does not induce drug resistance. Unlike conventional antibiotics, repeated use of the polymers does not lead to drug resistance. Transcriptomic analysis of bacteria further supports development of resistance to antibiotics but not to the macromolecules after 30 treatments. Importantly, high in vivo treatment efficacy of the macromolecules is achieved in MDR A. baumannii-, E. coli-, K. pneumoniae-, methicillin-resistant S. aureus-, cecal ligation and puncture-induced polymicrobial peritonitis, and P. aeruginosa lung infection mouse models while remaining non-toxic (e.g., therapeutic index—ED50/LD50: 1473 for A. baumannii infection). These biodegradable synthetic macromolecules have been demonstrated to have broad spectrum in vivo antimicrobial activity, and have excellent potential as systemic antimicrobials against MDR infections

    Impact of biogenic SOA loading on the molecular composition of wintertime PM2.5 in urban Tianjin: an insight from Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Biomass burning is one of the key sources of urban aerosols in the North China Plain, especially in winter when the impact of secondary organic aerosols (SOA) formed from biogenic volatile organic compounds (BVOCs) is generally considered to be minor. However, little is known about the influence of biogenic SOA loading on the molecular composition of wintertime organic aerosols. Here, we investigated the water-soluble organic compounds in fine particles (PM2.5) from urban Tianjin by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Our results show that most of the CHO and CHON compounds were derived from biomass burning; they contain O-poor and highly unsaturated compounds with aromatic rings, which are sensitive to photochemical reactions, and some of which probably contribute to light-absorbing chromophores. Under moderate to high SOA loading conditions, the nocturnal chemistry is more efficient than photooxidation to generate secondary CHO and CHON compounds with high oxygen content. Under low SOA-loading, secondary CHO and CHON compounds with low oxygen content are mainly formed by photochemistry. Secondary CHO compounds are mainly derived from oxidation of monoterpenes. But nocturnal chemistry may be more productive to sesquiterpene-derived CHON compounds. In contrast, the number- and intensity-weight of S-containing groups (CHOS and CHONS) increased significantly with the increase of biogenic SOA-loading, which agrees with the fact that a majority of the S-containing groups are identified as organosulfates and nitrooxy-organosulfates that are derived from the oxidation of BVOCs. Terpenes may be potential major contributors to the chemical diversity of organosulfates and nitrooxy-organosulfates under photo-oxidation. While the nocturnal chemistry is more beneficial to the formation of organosulfates and nitrooxy-organosulfates under low SOA-loading. The SOA-loading is an important factor associating with the oxidation degree, nitrate group content and chemodiversity of nitrooxy-organosulfates. Furthermore, our study suggests that the hydrolysis of nitrooxy-organosulfates is a possible pathway for the formation of organosulfates.</p
    • …
    corecore