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ABSTRACT: The dissolution behavior of cellulose in the mixtures
of dimethyl sulfoxide (DMSO) and different ionic liquids (ILs) at 25
°C was studied. High solubility of cellulose was reached in the
mixtures of ILs and DMSO at mole fractions of 1:2, 1:2, and 1:1 for
1-butyl-3-methylimidazolium acetate, 1-propyl-3-methylimidazolium
acetate, and 1-ethyl-3-methylimidazolium acetate, respectively. At
high DMSO/IL molar ratios (10:1−2:1), a longer alkyl chain of the
IL cation led to higher cellulose solubility. However, shorter cation
alkyl chains favored cellulose dissolution at 1:1. Rheological, Fourier
transform infrared spectroscopy (FTIR), and nuclear magnetic
resonance (NMR) measurements were used to understand cellulose
dissolution. It was found out that the increase of the DMSO ratio in
binary mixtures caused higher cellulose solubility by decreasing the
viscosity of systems. For cations with longer alkyl chains, stronger interaction between the IL and cellulose and higher viscosity of
DMSO/IL mixtures were observed. The new knowledge obtained here could be useful to the development of cost-effective solvent
systems for biopolymers.

■ INTRODUCTION

Due to the excessive exploitation of nonrenewable resources
and increasing environmental concerns, the processing and
application of cellulose as the most abundant natural polymer
have gained wide interest considering its wide availability, low
cost, biocompatibility, and biodegradability.1,2 Cellulose is a
homopolysaccharide consisting of numerous D-glucose units
linked through β(1−4) glycosidic bonds, which is mainly
present in cell walls, green plants, cotton (90%), and wood
(50%).3 Cellulose is traditionally used in textile and paper-
making industries, and recently, it has been considered to be a
promising feedstock for biobased products and fuels.4

However, the highly ordered crystalline structure and its
dense chain interactions in cellulose make this biopolymer
hardly soluble in common solvents, limiting its wide
applications.5 Traditional cellulose solvent systems such as
sodium hydroxide/carbon disulfide mixtures, N-methylmor-
pholine N-oxide (NMMO), and aqueous solutions of metal
complexes suffer drawbacks like insufficient solvation capa-
bility, high energy cost, volatility, toxicity, poisonous gas
pollution, and poor solvent recovery.1,5,6 Therefore, it is in
great demand to develop alternative “green” solvents to
overcome these issues.
Ionic liquids (ILs) have been widely recognized as promising

“green solvents” to replace traditional biopolymer solvents due
to their excellent dissolving abilities and desirable properties
such as negligible vapor pressure, low toxicity, high thermal

and chemical stability, nonflammability, structural designabil-
ity, and recyclability.1,7−9 ILs are salts made up of an organic
cation and an organic or inorganic anion and have a melting
point below 100 °C.7 The dissolution of cellulose in ILs is
mainly determined by the IL cation and anion structures (e.g.,
ion type, the length and symmetry of substituent groups).5,10

The length of the side alkyl chain, as well as the symmetry of
ILs, are also investigated in a number of other scientific
areas.11−13 Over the past few years, ILs have been increasingly
demonstrated to serve as excellent media for cellulose
dissolution,5,14 which also allows for the chemical modification
of cellulose with high degrees of substitution (DS),15,16 the
pretreatment of biomass for the subsequent enzymatic
conversion into sugars or ethanol,17 and the development of
various cellulose-based materials such as cellulose films,18 solid
polymer electrolytes,19 and drug carriers.20 Nonetheless, the
strong association between cations and anions makes ILs a
highly viscous medium,21 leading to slow and high dissolution
temperatures for cellulose in ILs.4,16,22
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Recently, the mixed solvents of ILs and polar aprotic co-
solvents (e.g., dimethyl sulfoxide (DMSO), dimethylacetamide
(DMA), and dimethylformamide (DMF)) have gained
substantial attention due to their higher dissolving rates and
lower costs and dissolving temperatures compared to pure
ILs.23,24 Xu et al. found that mixtures of 1-butyl-3-
methylimidazolium acetate ([C4mim][CH3COO]) and
DMSO, DMF, or DMA could effectively dissolve cellulose at
ambient temperature,25−27 while DMSO was considered as a
most suitable co-solvent to combine with ILs for cellulose
dissolution.26 Some researchers investigated the influence of
the IL structure on the solubility of cellulose in DMSO/IL
mixtures and found that cellulose solubility was related to the
Kamlet−Taft hydrogen-bond basicity (β) of ILs.16,22,28,29

The dissolution behavior of cellulose in DMSO/IL mixtures
was assumed to be affected by the viscosity of the mixture
solvents and the interactions between IL and DMSO and
between IL and cellulose.1,30−33 However, this assumption is
yet to be verified by direct experimental evidence and,
particularly, the relationship between cellulose dissolution
and the interactions between different ILs and cellulose at
different DMSO/IL ratios have rarely been studied.
Imidazolium acetate is one kind of ILs and is most commonly
used to dissolve cellulose due to its desirable properties such as
high dissolving capacity, easy availability, low toxicity, low
corrosiveness, low melting point, and favorable biodegrad-
ability.3 In this study, we investigate the effect of the DMSO/
IL ratio and the alkyl chain length of the IL cation on the
dissolution of cellulose in DMSO/IL mixtures by character-
izing the rheological properties of DMSO/IL mixtures and the
interactions between IL and DMSO and between IL and
cellulose using steady-shear rheological measurement, attenu-
ated total reflectance-Fourier transform infrared (ATR-FTIR)
spectroscopy, and nuclear magnetic resonance (NMR) spec-
troscopy.

■ RESULTS AND DISCUSSION

Dissolution of Cellulose in Different DMSO/IL
Mixtures. The solubility of MCC in pure DMSO, pure ILs,
and DMSO/IL mixtures of different molar ratios at 25 °C is
shown in Figure 1. At ambient temperature, cellulose was

insoluble in pure DMSO and insoluble or slightly soluble in
pure ILs. The solubility of MCC in DMSO/IL mixtures
depends on the DMSO/IL ratio. In DMSO/[C4mim]-
[CH3COO] and DMSO/[C3mim][CH3COO] mixtures, with
the DMSO/IL molar ratio decreasing from 10:1 to 2:1, the
cellulose solubility increased from 9 to 16 wt % and from 11 to
14 wt %, respectively. However, in the DMSO/[C2mim]-
[CH3COO] mixture, the cellulose solubility increased from 7
wt % to the maximum (18 wt %) as the DMSO/IL molar ratio
decreased from 10:1 to 1:1. It was found that compared to the
cellulose solubility in pure [C4mim][CH3COO] at 70 °C
(15.5 wt %),34 a higher solubility of cellulose in the DMSO/IL
mixtures at 25 °C was achieved with significantly reduced cost
and energy consumption. For all of these solvent systems, a
further decrease in the DMSO/IL ratio reduced the cellulose
solubility. These observations indicate that a low content of ILs
in DMSO/IL mixtures facilitates the dissolution of cellulose
compared with a high concentration of ILs.
The alkyl chain length of the IL cation also affected the

cellulose solubility (Figure 1). The solubility of MCC
increased with an increasing alkyl chain length of the IL
cation from C2 to C4 at DMSO/IL molar ratios of 10:1, 5:1,
and 2:1, whereas at higher IL concentrations (1:1 (mol/mol)
DMSO/IL mixtures or pure ILs), the cellulose solubility
followed the order [C2mim][CH3COO] > [C3mim]-
[CH3COO] > [C4mim][CH3COO]. These results suggest
that at high DMSO/IL molar ratios (10:1−2:1), a longer
cation alkyl chain of ILs is favorable for cellulose dissolution,
whereas at a low DMSO/IL molar ratio (1:1), cellulose
solubility increases with decreasing alkyl chain length.

Rheological Properties of DMSO/IL Mixtures. The
steady-shear viscosities of pure DMSO, pure ILs, and DMSO/
IL mixtures are compared (Table 1). For the three types of
DMSO/IL mixtures, increasing the DMSO ratio resulted in a
significant decrease in the mixture viscosity (p < 0.05),
probably due to the disruption of IL clusters by DMSO.33 As
shown in Table 1, the viscosity of DMSO/IL mixtures
increased with a higher IL content in the DMSO/IL mixture

Figure 1. Solubility of cellulose in DMSO/IL mixtures of different
molar ratios at 25 °C.

Table 1. Viscosities of DMSO/IL Mixtures at Different
Molar Ratios

samples viscosity (mPa·s)

pure DMSO 2.06 ± 0.19a

DMSO/[C2mim][CH3COO]-10:1 3.64 ± 0.13b

DMSO/[C2mim][CH3COO]-5:1 5.38 ± 0.11cd

DMSO/[C2mim][CH3COO]-2:1 11.88 ± 0.19e

DMSO/[C2mim][CH3COO]-1:1 21.58 ± 0.25h

pure [C2mim][CH3COO] 88.58 ± 0.67k

DMSO/[C3mim][CH3COO]-10:1 3.92 ± 0.15bc

DMSO/[C3mim][CH3COO]-5:1 6.33 ± 0.19d

DMSO/[C3mim][CH3COO]-2:1 16.10 ± 0.18f

DMSO/[C3mim][CH3COO]-1:1 46.31 ± 0.21i

pure [C3mim][CH3COO] 231.28 ± 2.85m

DMSO/[C4mim][CH3COO]-10:1 4.19 ± 0.04bc

DMSO/[C4mim][CH3COO]-5:1 6.72 ± 0.22d

DMSO/[C4mim][CH3COO]-2:1 18.31 ± 0.25g

DMSO/[C4mim][CH3COO]-1:1 62.90 ± 0.42j

pure [C4mim][CH3COO] 355.38 ± 1.67n

Values are mean ± standard deviation, and values with the same
lowercase letters in the same column are not significantly different (p
< 0.05).
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and a longer cation alkyl chain (p < 0.05), which is in general
agreement with our previous results for water/IL mixtures.35,36

Irrespective of the IL type, the viscosities of 1:1 (mol/mol)
DMSO/IL mixtures were two to four times higher than those
of the 2:1 (mol/mol) mixtures (p < 0.05), while 10:1 and 5:1

(mol/mol) DMSO/IL mixtures exhibited relatively low
viscosities (p > 0.05). Interestingly, as the DMSO/IL molar
ratio decreased from 2:1 to 1:1, the DMSO/[C2mim]-
[CH3COO] mixture showed a smaller viscosity increase (9.7
mPa·s) than the DMSO/[C3mim][CH3COO] mixture (30.2

Figure 2. ATR-FTIR spectra for different DMSO/IL mixtures before (real line) and after (dash line) addition of 5 wt % cellulose at 25 °C for 2 h.

Table 2. Wavenumbers Associated with C2−H of the Cation Imidazolium Ring and OC−O of the Anion for DMSO/IL
Mixtures Before and After the Addition of 5 wt % Cellulose at 25 °C for 2 h

DMSO/IL DMSO/IL-MCC

samples υC2−H υOC−O υC2−H υOC−O ΔυC2−H ΔυOC−O

DMSO/[C4mim][CH3COO]-10:1 3141.4 1380.5 3145.0 1385.2 3.6 4.7
DMSO/[C4mim][CH3COO]-5:1 3141.2 1380.9 3144.0 1384.8 2.8 3.9
DMSO/[C4mim][CH3COO]-2:1 3140.7 1381.9 3143.3 1383.6 2.6 2.7
DMSO/[C4mim][CH3COO]-1:1 3140.3 1382.2 3141.8 1383.6 1.5 1.4
DMSO/[C3mim][CH3COO]-10:1 3141.1 1379.8 3143.8 1382.6 2.7 2.8
DMSO/[C3mim][CH3COO]-5:1 3140.9 1380.3 3142.6 1382.3 1.7 2.0
DMSO/[C3mim][CH3COO]-2:1 3140.7 1380.9 3141.9 1382.7 1.2 1.8
DMSO/[C3mim][CH3COO]-1:1 3139.9 1381.5 3140.7 1382.7 0.8 1.2
DMSO/[C2mim][CH3COO]-10:1 3140.6 1379.6 3142.6 1382.1 2.0 2.5
DMSO/[C2mim][CH3COO]-5:1 3140.2 1379.8 3141.7 1381.7 1.5 1.9
DMSO/[C2mim][CH3COO]-2:1 3139.9 1380.4 3140.6 1382.1 0.7 1.7
DMSO/[C2mim][CH3COO]-1:1 3139.5 1381.3 3139.9 1382.4 0.4 1.1
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mPa·s) and the DMSO/[C4mim][CH3COO] mixture (44.6
mPa·s).
ATR-FTIR Analysis of DMSO/IL Mixtures and DMSO/

IL-MCC Mixtures. Figure 2 shows the ATR-FTIR spectra for
DMSO/IL and DMSO/IL-MCC mixtures (MCC concen-
tration: 5 wt %). Among them, C2−H on the cationic
imidazole ring and OC−O on the anions of ILs are the main
sites for ILs to interact with DMSO and cellulose via hydrogen
bonding.16,37 Table 2 lists the infrared wavenumbers
corresponding to C2−H (υC2−H) and OC−O (υOC−O)
for DMSO/IL mixtures, and these mixtures contain 5 wt %
cellulose with different DMSO/IL molar ratios. As shown in
Figure 2 and Table 2, for the mixture solvents without
cellulose, with decreasing DMSO/IL molar ratio from 10:1 to
1:1, there was a red shift for C2−H of IL cations (υC2−H
decreased) and a blue shift for OC−O of the IL anion

(acetate) (υOC−O increased). This indicates that with a higher
IL content in the mixtures, the interaction between the IL
cation and DMSO weakens while that between IL ions
becomes stronger.37,38 For all of these three DMSO/IL
mixtures added with cellulose, the υC2−H and υOC−O values
increased (blue shift), indicating that the ILs interacted with
cellulose. For all of these DMSO/IL-MCC mixtures, the extent
of the blue shift for C2−H of IL cations (ΔυC2−H) and O
C−O of the IL anion (ΔυOC−O) increased with increasing
DMSO/IL molar ratio from 1:1 to 10:1, indicating that a lower
IL content in DMSO/IL mixtures is conducive to the
interaction between ILs and cellulose. Moreover, ΔυOC−O
was always greater than ΔυC2−H, suggesting that the anions of
ILs play a predominant role in the interaction between ILs and
cellulose with interactions involving cations being much
weaker. At the same DMSO/IL ratio, both ΔυC2−H and

Figure 3. 1H NMR spectra for different DMSO/IL mixtures before and after the addition of 5 wt % cellulose at 25 °C for 2 h.

Figure 4. 13C NMR spectra for different DMSO/IL mixtures before and after the addition of 5 wt % cellulose at 25 °C for 2 h.
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ΔυOC−O increased with an increasing alkyl chain length of the
IL cation, indicating stronger interactions between cellulose
and ILs with longer alkyl chains.
NMR Analysis of DMSO/IL and DMSO/IL-MCC

Mixtures. The 1H NMR and 13C NMR spectra for DMSO/
IL and DMSO/IL-MCC mixtures (MCC concentration: 5 wt
%) are shown in Figures 3 and 4, respectively. The chemical
shifts for hydrogen tethered at the C(2) of the imidazolium
ring and for the carbon atom of OC−O of the IL anion
(designated as δC2−H and δOC−O, respectively) are listed in
Table 3. The changes in the chemical shifts for these atoms are
indicative of interactions between IL and DMSO33,37 or
between IL ions and cellulose molecules.16,26,32 For DMSO/IL
solvents without cellulose, δC2−H and δOC−O increased with a
decrease in the DMSO/IL molar ratio from 10:1 to 1:1,
indicating enhanced cation−anion interactions.33,39 For the
mixture solvents added with cellulose, the signal for the C(2)
hydrogen of the imidazolium ring moved upfield (a decrease in
δC2−H), whereas that for the carboxyl carbon atom moved
downfield (an increase in δOC−O), which might be due to the
interaction of ILs with the hydroxyl groups of cellulose.32 With
decrease in the DMSO/IL molar ratio from 10:1 to 1:1, the
extent of shifting for δC2−H and δOC−O increased, suggesting
that the addition of DMSO to ILs facilitates the interaction
between cellulose and ILs. At the same DMSO/IL ratio, the
shifting extent for δC2−H and δOC−O followed the order
[C4mim][CH3COO] > [C3mim][CH3COO] > [C2mim]-
[CH3COO], indicating that the interactions between IL and
cellulose increased with a longer alkyl chain of the IL cation.
The NMR results here are consistent with the ATR-FTIR
analysis.
General Discussion. Rheological, ATR-FTIR, and NMR

spectroscopy analyses clearly indicate that the dissolution of
cellulose in DMSO/IL mixture solvents depends on the
viscosity of these solvents and IL−DMSO and IL−cellulose
interactions. Specifically, an increasing DMSO/IL ratio (from
1:1 to 10:1) means increased interactions between DMSO and
ILs and reduced interactions between the cation and anion of
ILs (Figures 2−44) and also results in a lower viscosity (Table
1). All these can facilitate interactions between the IL and
cellulose (as shown by the increase in Δυ and Δδ in Tables 2
and 3, respectively), and thus, the dissolution of cellulose in
DMSO/IL mixtures at ambient temperature. However, when
the DMSO/IL molar ratio is high enough (2:1 DMSO/
[C4mim][CH3COO], 2:1 DMSO/[C3mim][CH3COO], and

1:1 DMSO/[C2mim][CH2COO]), there is not enough IL to
disrupt the hydrogen bonds in cellulose, resulting in lower
cellulose solubility. On the other hand, a higher IL content in
the mixture solvent increases the solvent viscosity and
decreases the IL ion mobility, which can limit the penetration
of IL into the cellulose structure for the disruption of hydrogen
bonds. Therefore, a certain DMSO/IL ratio is required for the
maximum dissolution of cellulose in DMSO/IL mixtures.
The ATR-FTIR and NMR spectroscopy results indicate that

the interactions between ILs and cellulose strengthen with an
increasing alkyl chain length of the IL cation (as shown by the
increase in Δυ and Δδ in Tables 2 and 3, respectively). When
the DMSO/IL molar ratio is high (10:1, 5:1, and 2:1), longer
alkyl chains lead to stronger interactions between ILs and
cellulose, which result in more effective disruption of the
hydrogen bonds in cellulose and a higher solubility of cellulose.
On the other hand, when the DMSO/IL ratio is low (DMSO/
IL 1:1 (mol/mol) mixtures or pure ILs), DMSO/[C4mim]-
[CH3COO] and DMSO/[C3mim][CH3COO] mixtures (with
higher viscosity) are less effective at dissolving cellulose than
the DMSO/[C2mim][CH3COO] mixture (with lower vis-
cosity). This can be linked to the effect of the viscosity of
different ILs on the viscosity of the mixture solvents, and the
latter affects the ion mobility of ILs and their hydrogen-bond
disruption capability.

■ CONCLUSIONS
Our results show that the room-temperature dissolution
behavior of cellulose in DMSO/IL mixtures was affected by
the DMSO/IL ratio and the alkyl chain length of the IL cation
and, more importantly, there is an interplay between these two
factors. Specifically, for DMSO/[C4mim][CH3COO] and
DMSO/[C3mim][CH3COO] mixtures, the maximum cellu-
lose solubility occurred at a DMSO/IL molar ratio of 2:1,
while for the DMSO/[C2mim][CH3COO] mixture, it was
shown at 1:1 (mol/mol). Cellulose dissolution can be
facilitated by a longer cation alkyl chain of the IL cation at
high DMSO/IL molar ratios (10:1, 5:1, and 2:1) but impeded
at a low DMSO/IL molar ratio (1:1). Besides, it is
demonstrated in this work that the DMSO/IL ratio and the
alkyl chain length of the IL cation determine the viscosity and
hydrogen-bonding capacity of DMSO/IL mixtures, which is
the major determinant for the dissolution of cellulose in these
solvents. At high DMSO/IL molar ratios (10:1, 5:1, and 2:1),
the interactions between IL and DMSO and between IL and

Table 3. Chemical Shift (C2−H of the Cation Imidazolium Ring in 1H NMR and OC−O of the Anion in 13C NMR) of
DMSO/IL Mixtures Before and After the Addition of 5 wt % Cellulose at 25 °C for 2 h

DMSO/IL DMSO/IL-MCC

samples δC2‑H δOC−O δC2−H δOC−O ΔδC2−H ΔδOC−O

DMSO/[C4mim][CH3COO]-10:1 10.36 174.07 9.99 174.72 −0.37 0.65
DMSO/[C4mim][CH3COO]-5:1 10.46 174.39 10.15 174.84 −0.31 0.45
DMSO/[C4mim][CH3COO]-2:1 10.52 174.69 10.32 175.06 −0.20 0.37
DMSO/[C4mim][CH3COO]-1:1 10.57 174.98 10.40 175.23 −0.17 0.25
DMSO/[C3mim][CH3COO]-10:1 10.33 174.05 9.98 174.64 −0.35 0.64
DMSO/[C3mim][CH3COO]-5:1 10.43 174.28 10.15 174.68 −0.28 0.40
DMSO/[C3mim][CH3COO]-2:1 10.48 174.64 10.31 174.92 −0.17 0.28
DMSO/[C3mim][CH3COO]-1:1 10.55 174.84 10.38 175.09 −0.17 0.25
DMSO/[C2mim][CH3COO]-10:1 10.27 174.04 9.94 174.67 −0.33 0.63
DMSO/[C2mim][CH3COO]-5:1 10.35 174.27 10.10 174.65 −0.25 0.38
DMSO/[C2mim][CH3COO]-2:1 10.42 174.62 10.26 174.90 −0.16 0.28
DMSO/[C2mim][CH3COO]-1:1 10.44 174.81 10.28 175.06 −0.16 0.25
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cellulose are key to determining cellulose solubility, whereas at
a low DMSO/IL ratio (1:1), the viscosity of the DMSO/IL
mixtures was the predominant factor governing cellulose
dissolution. The findings from this work not only enrich our
knowledge of the dissolution mechanisms of cellulose in
DMSO/IL mixtures but also benefit the design of cost-effective
solvents for natural biopolymers, facilitating the development
of high-value-added processes for cellulose such as cellulose
derivatization, biomass conversion, and degradable material
fabrication.

■ MATERIALS AND METHODS

Materials.Microcrystalline cellulose powder (MCC) with a
viscosity-average degree of polymerization (DP) of 270 (purity
≥95%, water content <5%) and DMSO (99.5% pure, CAS 67-
68-5) were purchased from Sigma Chemical Co. (St. Louis,
MO). Three ILs used in this work were 1-butyl-3-
methylimidazolium acetate ([C4mim][CH3COO], CAS
284049-75-8), 1-propyl-3-methylimidazolium acetate
([C3mim][CH3COO]), and 1-ethyl-3-methylimidazolium ac-
etate ([C2mim][CH3COO], CAS 143314-17-4) (Figure 5),
which were supplied by Nuowei Chemistry Co., Ltd. (Wuhu,
Anhui, China). All of these ILs were ≥95% pure (water
content <0.5%) and used without further purification. The
deuterated DMSO (DMSO-d6, CAS 2206-27-1) (>99.0%
pure) used for NMR samples was purchased from Tokyo
Chemical Industry Co., Ltd. (Tokyo, Japan).
Dissolution of Cellulose. The DMSO/IL mixtures with

different DMSO/IL molar ratios (10:1, 5:1, 2:1, and 1:1) were
prepared at ambient temperature. In a typical dissolution
experiment, 0.02 g of MCC was dispersed in 2.0 g of the
DMSO/IL mixture, and the resulting DMSO/IL-MCC
mixture was stirred magnetically at 25 ± 0.5 °C.26 More
MCC (0.02 or 0.01 g each time) was added and the solution
was continuously stirred. If the added cellulose could not be
dissolved within another 2 h, that is, the solution became
unclear under a polarized light microscope (DM-4000M-LED,
Leica, Germany), the solution was considered to be saturated
with cellulose. The cellulose solubility is calculated from eq 1

= ×M Mcellulose solubility(wt %) ( / ) 100cellulose solvent
(1)

where Mcellulose is the total mass of the dissolved cellulose and
Msolvent is the initial mass of the solvent. In the following text,
abbreviations “DMSO/IL-n:m-MCC” are used, where “n:m”
indicates the molar ratio of DMSO/IL.

Rheology. The rheological properties of DMSO/IL
mixtures were analyzed according to the previous method
described elsewhere.36 An Anton Paar MCR302 rheometer
(Anton Paar, GmbH., Austria) with a Peltier temperature-
control system and a cone-plate geometry (4° angle and 40
mm diameter) was used to record the steady-state shear
viscosity of 0.7 mL of samples over a shear rate range of 10−
500 s−1 at 25 °C. To prevent the absorption and evaporation of
water vapor, a small amount of silicone oil was placed at the
edge of the measuring cell.

Attenuated Total Reflectance-Fourier Transform
Infrared (ATR-FTIR) Spectroscopy. The DMSO/IL-MCC
mixture with an MCC concentration of 5.0 wt % was prepared
by dissolving MCC in the respective DMSO/IL mixture at 25
°C for about 2 h until complete dissolution of cellulose. ATR-
FTIR spectra for DMSO/IL and DMSO/IL-MCC mixtures
were acquired using a Thermo Scientific Nicolet IS50
spectrometer (Thermo Fisher Scientific) with a diamond
crystal at ambient temperature. The samples were scanned
between 4000 and 400 cm−1 at a resolution of 4 cm−1 against
the air as the background.37

Nuclear Magnetic Resonance (NMR) Spectroscopy.
Mixtures of DMSO-d6/IL at different molar ratios (10:1, 5:1,
2:1, and 1:1) were prepared. DMSO-d6/IL-MCC mixtures
with an MCC concentration of 5.0 wt % were obtained by
dissolving MCC in respective DMSO-d6/IL mixtures at 25 °C
for about 2 h until complete dissolution of cellulose. 1H NMR
and 13C NMR spectra for DMSO-d6/IL mixtures and DMSO-
d6/IL-MCC mixtures were acquired using a DMX 300 NMR
spectrometer (300 MHz) (Bruker) at ambient temperature.16

Statistical Analysis. Rheological analysis was performed at
least in triplicates for each sample and the results are reported
as mean ± standard deviation.35 For ATR-FTIR and NMR,
only one measurement was performed. One-way analysis of
variance (ANOVA) followed by post hoc Duncan’s multiple
range tests (p < 0.05) was conducted to determine the
significant differences between mean values using SPSS 17.0
statistical software (SPSS Inc. Chicago, IL).
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Figure 5. Structures of the ionic liquids used.
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