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ARTICLE

A macromolecular approach to eradicate multidrug
resistant bacterial infections while mitigating drug
resistance onset
Willy Chin1,2, Guansheng Zhong3, Qinqin Pu4, Chuan Yang1, Weiyang Lou3, Paola Florez De Sessions5,

Balamurugan Periaswamy5, Ashlynn Lee1, Zhen Chang Liang1, Xin Ding1, Shujun Gao1, Collins Wenhan Chu5,

Simone Bianco 6, Chang Bao3, Yen Wah Tong 7, Weimin Fan3,

Min Wu 4, James L. Hedrick6 & Yi Yan Yang1

Polymyxins remain the last line treatment for multidrug-resistant (MDR) infections. As

polymyxins resistance emerges, there is an urgent need to develop effective antimicrobial

agents capable of mitigating MDR. Here, we report biodegradable guanidinium-functionalized

polycarbonates with a distinctive mechanism that does not induce drug resistance. Unlike

conventional antibiotics, repeated use of the polymers does not lead to drug resistance.

Transcriptomic analysis of bacteria further supports development of resistance to antibiotics

but not to the macromolecules after 30 treatments. Importantly, high in vivo treatment

efficacy of the macromolecules is achieved in MDR A. baumannii-, E. coli-, K. pneumoniae-,

methicillin-resistant S. aureus-, cecal ligation and puncture-induced polymicrobial peritonitis,

and P. aeruginosa lung infection mouse models while remaining non-toxic (e.g., therapeutic

index—ED50/LD50: 1473 for A. baumannii infection). These biodegradable synthetic macro-

molecules have been demonstrated to have broad spectrum in vivo antimicrobial activity, and

have excellent potential as systemic antimicrobials against MDR infections.
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“ESKAPE” pathogens, including A. baumannii, K. pneu-
moniae, and P. aeruginosa, are a coterie of bacteria that
exhibit a high incidence of antibiotic resistance, and are

common causes of hospital-acquired infections especially in
immunocompromised and critically ill patients1. Over the past
few decades, the emergence of polymyxins resistance in these
pathogens has become increasingly prevalent2. Despite tre-
mendous efforts, the panacea for these recalcitrant infections has
not been found. With no effective and safe treatments available,
multidrug-resistant (MDR) infections are quickly morphing into
a global healthcare threat. Polymyxins remain the last line
treatment for these MDR Gram-negative bacterial infections
although they are associated with nephrotoxicity and neurotoxi-
city, and are not active against Gram-positive bacteria or fungi3, 4.
There is thus a dire need to develop novel antimicrobial com-
pounds that have a broad spectrum of activity against both Gram-
positive and -negative bacteria, yet at the same time, are well
tolerated with low propensity for resistance development.

To address this problem, an unconventional class of antimicrobial
agents comprising of peptides5–7 and synthetic polymers have
recently emerged8. These peptides/polymers contain cationic charges
that target negatively charged microbial membrane (phosphate head
groups) through electrostatic interaction and hydrophobic compo-
nents that disrupt lipid domains of the cytoplasmic membrane,
leading to cell death (membrane-disruption antimicrobial mechan-
ism). The balance of cationic charge (hydrophilicity) and hydro-
phobicity renders selectivity toward microbes as mammalian cell
surface is generally neutral9–12. While exhibiting broad-spectrum
antimicrobial activities, antimicrobial peptides possess certain inher-
ent limitations such as high manufacturing costs and in vivo toxicity,
which limits their systemic applications in the clinic although they are
currently used in topical treatments8, 13. Significant efforts have thus
been directed toward the development of synthetic antimicrobial
polymers as pioneered by DeGrado and colleagues14, Gellman and
colleagues15, Tew and colleagues9, 10, and Kuroda and
colleagues16, 17. Most antimicrobial polymers reported in the litera-
ture have non-degradable backbones, which may potentially lead to
accumulation in the body and long-term toxicity. In addition, the
related studies mainly focused on structure–activity relationships
through evaluation of in vitro antimicrobial and hemolytic activities.
Little research has been performed on in vivo activity of antimicrobial
polymers, although one paper by Kuroda’s lab reported that treat-
ment with cationic methacrylate polymers effectively reduced the
number of bacteria in a rat nasal Gram-positive S. aureus coloniza-
tion model18. We recently synthesized biodegradable quaternary
ammonium-containing amphiphilic polycarbonates as antimicrobial
agents12, 19–22 using metal-free organocatalytic living ring-opening
polymerization (ROP) methodology developed by our group23, 24.
This polymerization strategy allows for precise control of molecular
length and functionality as well as modulation of their corresponding
structure–activity relationships. The polymers with optimal structures
were potent against bacteria through the membrane-disruption
mechanism, and effective in treating Gram-positive methicillin-
resistant S. aureus (MRSA)-caused systemic infection21, 25. However,
these polycarbonates are not active against P. aeruginosa, A. bau-
mannii, or K. pneumoniae21. Guanidinium-rich molecules (e.g., HIV-
1 TAT peptide) exhibit a membrane-translocation property, which is
attributed to the ability of guanidinium to form stable multidentate
hydrogen bonds with phosphate or sulfate head groups on the cell
membrane26–30. Guanidinium-functionalized non-degradable poly-
norbornenes31 and polymethacrylates32 were reported to be more
potent against bacteria in vitro than their amine-functionalized
counterparts, and had significantly less interaction with serum
proteins32.

In this study, polycarbonates are functionalized with guanidi-
nium groups to provide biodegradable broad-spectrum

polyguanidiniums. From octanol–water partition, bacterial
membrane integrity, SEM and TEM analyses, at the effective
concentration, the antibacterial function of the polymer is mainly
based on membrane translocation followed by precipitation of
bacterial cytoplasmic contents (e.g., proteins and genes). These
polymers are demonstrated to be effective in treating MDR A.
baumannii, E. coli, K. pneumoniae, P. aeruginosa, and MRSA
infections in vivo with negligible toxicity while mitigating drug
resistance.

Results
Polymer synthesis. To synthesize guanidinium-functionalized
polycarbonates, guanidinium-functionalized alcohol precursors
were first made by a facile, efficient, and modular route as
depicted in Fig. 1a. Using 1,3-bis(tert-butoxycarbonyl)-2-methyl-
2-thiopseudourea as the guanylating agent, the respective primary
amine group belonging to a structurally diverse range (e.g.,
homologous straight chain alkyl, cyclohexyl, aromatic, etc.) of
amino alcohols reacted readily under ambient conditions in
desirable quantitative yields accompanied by the concomitant loss
of a primary thiol by-product (i.e., methanethiol, MeSH) to afford
the consequent Boc-protected guanylated alcohols (Supplemen-
tary Figure 1). In addition to its low cost, rapid reaction rates and
high yields as compared to other conventional guanylating agents,
e.g., pyrazoles33, the use of methylisothioureas in guanidine
synthesis is advantageous in several ways34. Its use can be
extended to the less reactive aromatic amines, such as p-amino-
phenol with good yields; there is also ease of isolation and pur-
ification upon reaction completion by virtue of the gaseous nature
of the thiol by-product. The desired guanidinium-functionalized
monomers were efficiently accessed through conversion of the
cyclic carbonate carboxylic acid (i.e., MTC-OH) to an acid
chloride intermediate in situ, followed by an esterification with
the aforementioned guanylated alcohols23, 24 (Supplementary
Figure 1). This illustrates the amenability and expeditiousness of
our synthetic strategy.

Polymerization was subsequently carried out by metal-free
organocatalytic ROP of Boc-protected guanidine-functionalized
carbonate monomers containing the various requisite hydro-
phobic spacer moieties (Fig. 1b). In situ analysis by gel
permeation chromatography (GPC) demonstrated more than
90% consumption of the respective monomer (MTC-OX-
BocGua) within a remarkably short reaction time of 30 min at
room temperature. By referencing the integrated intensities of
relevant resonances attributed from the terminal initiator with
respect to the polymer side chains, 1H NMR characterization of
the resulting polymers elucidated that the average DP (degree of
polymerization) obtained was in good agreement with that
predicted from initial monomer/initiator feed ratio (Supplemen-
tary Figure 1 and Fig. 2). Furthermore, all polymers obtained
exhibited narrow molecular weight distribution with a poly-
dispersity index (Ɖ) ranging between 1.1 and 1.2, as ascertained
by GPC prior to deprotection of the polymers’ Boc groups
(Fig. 1c). Upon purification of the Boc-protected polycarbonates,
a facile removal of the Boc groups with trifluoroacetic acid
afforded the desired water-soluble guanidinium-functionalized
polymers (i.e., P(MTC-OX-Gua)). Taken together, these results
thus exemplify the expedient and highly controlled ability of the
organocatalytic ROP for acquiring functional and well-defined
polycarbonates with predictable molecular weights and narrow
molecular weight distribution. Such properties are deemed
particularly pivotal for an unambiguous and systematic elucida-
tion of the role that the various structural determinants
(molecular length and hydrophobic spacer) have on biological
activity to optimize activity and selectivity. The polymers are
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labeled according to the structure of the hydrophobic spacer and
the DP predicted from initial monomer/initiator feed ratio. As an
example, pEt_20 denotes a guanidinium-functionalized polycar-
bonate containing 20 repeating units with an ethyl group as the
hydrophobic spacer.

Antimicrobial and hemolytic activities. The influence of the
polymers’ molecular length was first studied on antimicrobial and
hemolytic activities by varying DP from 5 to 40. The polymer
pEt_20 exhibited the strongest antimicrobial activity against a
broad panel of pathogenic microbes with minimum inhibitory
concentrations (MICs, the lowest polymer concentrations that
completely inhibited microbial growth) in the range of 7.8–15.6
µg/mL and the lowest geometric mean (Gm) value of MICs
(Supplementary Table 1). The MICs of pEt_20 were much lower

than the previous antimicrobial polycarbonates bearing qua-
ternary ammonium groups12, 19–22. Remarkably, pEt_20 pos-
sessed a pronounced lack of toxicity toward rat red blood cells
(HC50, polymer concentration that induces 50% hemolysis:
>8000 μg/mL) (Supplementary Table 1). This is the highest HC50

value that has ever been reported for biodegradable synthetic
antimicrobial polymers12, 19–22. Serum content was less than 2%
in the hemolysis assay. The MIC values of pEt_20 (and pEt_10)
against the panel of bacteria were determined to be the same in
the presence of 2% serum. Lack of interaction with proteins was
possibly due to diffused charge in the guanidinium group. Its
selectivity (HC50/Gm and HC5/Gm, >584) is significantly higher
than those of many host defense peptides, e.g., cecropin A (HC5/
Gm= 0.034)35, porcine protegrin-1 (HC50/Gm= 2.3)35, magai-
nins (HC50/MIC= 10)36 and defensins (rMicasin: HC5/Gm= 4)
37, synthetic peptides38, 39, guanidinium-functionalized non-
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degradable polynorbornenes (HC50/Gm, 75)31, and poly-
methacrylates (HC5/Gm, <2)32, and recently reported star-shaped
peptide PAMAM-[poly(lysine-co-valine)]32 (HC5/Gm, 23)40.
Moreover, pEt_20 and pEt_10 had significantly lower cytotoxicity
against human embryonic kidney (HEK293T) cells after 18-h
incubation than polymyxin B (Supplementary Figure 2) and
PAMAM-[poly(lysine-co-valine)]32 (shorter incubation time: 90
min)40 (IC50, inhibitory concentration of compound that leads to
50% cell viability: >500, >500, 165, and 128 μg/mL, respectively).

Having established the optimal DP to be 20 for the highest
potency and selectivity, the influence of the hydrophobic spacer
was further investigated for a series of polymers bearing different
spacer group structures encompassing of aliphatic and aromatic
types (Fig. 2). The alkyl series (pEt_20, pPr_20, and pBut_20) had
greater antimicrobial potency and higher HC50 than the aromatic
ones (pPh_20 and pBn_20). Increasing the alkyl length from ethyl
to pentyl or cyclohexyl led to a dramatic increase in hemolysis.
This is largely attributed to the corresponding increase in
polymer’s hydrophobicity that might enhance its hydrophobic
interaction with cell membrane, facilitating membrane disrup-
tion. Although oligoarginine peptide R20 has the same number of
guanidinium groups and the same hydrophobic spacer as pPr_20,
its antimicrobial activity was significantly lower (Fig. 2). R10 was
even less potent. This stark difference might be due to enhanced
membrane translocation of polymer and/or stronger interaction
between the polymer and cytoplasmic proteins/genes stemming
from the more hydrophobic polycarbonate backbone as com-
pared to peptide backbone. As pEt_10 and pEt_20 exhibited

strong antimicrobial activity and high selectivity, they were
chosen for further studies.

Antimicrobial activity against clinically isolated MDR bacteria.
To evaluate the potential of the polymers as effective anti-
microbials for future clinical applications, pEt_10 and pEt_20
were assayed against four of the most opportunistic and MDR
bacteria in both developing and developed healthcare systems,
Gram-negative A. baumannii, K. pneumoniae, and E. coli as well
as Gram-positive MRSA (Supplementary Table 2). These bacteria
are part of “ESKAPE” pathogens1, and are resistant to multiple
antibiotics including polymyxin B (Supplementary Table 2). The
polymers demonstrated efficacious antimicrobial activity and
favorable selectivity toward the clinically isolated MDR bacteria
(Fig. 3a), in concordance with efficacy seen against commercially
available ATCC strains (Fig. 2). In sharp contrast, the oligoargi-
nine peptides R10 and R20 were not effective against the bacteria
even at 512 µg/mL. The presence of 10% serum did not alter the
MIC values of both pEt_10 and pEt_20 against these MDR
clinical isolates. A similar phenomenon was also observed in
guanidinium-functionalized non-degradable polymethacrylates32.
In the presence of 40% serum, MIC increased by 1–7 times (1
time for MRSA and A. baumannii, 1–3 times for K. pneumoniae,
and 7 times for E. coli). The increases in MIC for MRSA and
ATCC S. aureus (1 time) were lower than those for small mole-
cular synthetic foldamers against ATCC S. aureus (31–63 times
increase in MIC in the presence of 40% serum), which showed
high in vivo efficacy in a S. aureus-caused mouse thigh infection
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model41, indicating that pEt_10 and pEt_20 had less protein
interaction than the foldamers.

In vitro killing efficiency and kinetics. The antimicrobial activity
of the polymers was further investigated by colony forming unit
(CFU) assay against a representative strain of clinically isolated
MDR bacteria, A. baumannii 10073, E. coli 56809, K. pneumoniae
8637, and MRSA 25312, in comparison with antibiotics imipe-
nem (control for the Gram-negative bacteria) and vancomycin
(control for MRSA). The A. baumannii and K. pneumoniae
strains were resistant to imipenem, whereas the E. coli and MRSA
strains were susceptible to imipenem and vancomycin, respec-
tively (Supplementary Table 3). Like imipenem, at 1× MIC, 2×
MIC, or 4× MIC, pEt_10 and pEt_20 demonstrated ∼100%
killing efficiency against A. baumannii (Supplementary Figure 3).
In the case of E. coli and K. pneumoniae, they achieved more than
99.9% efficiency at 2 ×MIC and 1 ×MIC, respectively (Supple-
mentary Figure 3). Killing efficiency of vancomycin against
MRSA was less than 99% (2-log reduction in bacterial counts)

even at 4 ×MIC, while pEt_10 and pEt_20 eliminated more than
99.9% MRSA (3-log reduction in bacterial counts) at 2 ×MIC and
1 ×MIC, respectively. These results clearly demonstrated bacter-
icidal activity of the polymers against both Gram-positive and
Gram-negative MDR bacteria. Although imipenem and vanco-
mycin were shown to be bactericidal (more than 3-log reduction
in bacterial counts) at 1 ×MIC and 2-log reduction in bacterial
counts at 2 ×MIC, respectively, their efficacies were only
observed after 18 h of treatment (Supplementary Figure 3). They
were unable to eradicate 99.9% bacteria after 1 h (A. baumannii),
2 h (K. pneumoniae), or 3 h (MRSA, E. coli) of treatment even at
4 ×MIC (Fig. 3, Supplementary Figure 4, and Supplementary
Figure 5). In sharp contrast, pEt_10 and pEt_20 eliminated these
MDR bacteria effectively even at shorter treatment durations
(Fig. 3, Supplementary Figure 4, and Supplementary Figure 5).
For example, pEt_20 eradicated ~99.9% A. baumannii at 1 ×MIC
within 10 min (Fig. 3b). An increase in polymer concentration
resulted in faster elimination of bacteria. In addition, pEt_20 with
a longer polymer chain eradicated bacteria more efficiently
especially at higher concentrations. Such promising in vitro

Polymer

pEt_10

a

b

c

pEt_20

16/>500 16/>500

16/>500

16/>500

16/>500 16/>500

16/>500 64/>125

64/>125

64/>125

32/>250

8/>1000

8/>1000 8/>1000

16/>500

(strain no.
10073)

(strain no.
9956)

(strain no.
56809)

MIC (µg/mL)/Selectivity (HC50/MIC)

(strain no.
58628)

(strain no.
8637)

(strain no.
8916)

(strain no.
25312)

(strain no.
25332)

16/>500

A. B. A. B. E. coli E. coli K. P. K. P. MRSA MRSA

10

8

6

4

2

0
0

0 30 60 90 120 150 180

10 20

Ig
 (

C
F

U
/m

L)

10

8

6

4

2

0

Ig
 (

C
F

U
/m

L)

10

8

6

4

2

0

Ig
 (

C
F

U
/m

L)

10

8

6

4

2

0

Ig
 (

C
F

U
/m

L)

10

8

6

4

2

0

Ig
 (

C
F

U
/m

L)

10

8

6

4

2

0

Ig
 (

C
F

U
/m

L)

30
Time (minutes)

Time (minutes)

0 30 60 90 120 150 180
Time (minutes)

0 30 60 90 120 150 180
Time (minutes)

Time (minutes)

Control
Imipenem

1× MIC 2× MIC 4× MIC

pEt_10
pEt_20

Control
Imipenem
pEt_10
pEt_20

Control
Imipenem
pEt_10
pEt_20

Control
Imipenem
pEt_10
pEt_20

Control
Imipenem
pEt_10
pEt_20

Control
Imipenem
pEt_10
pEt_20

40 50 60 0 10 20 30 40 50 60

Time (minutes)

0 10 20 30 40 50 60

Fig. 3 Antibacterial activity of guanidinium-functionalized polycarbonates. a MIC and selectivity (HC50/MIC) of polymers against clinically isolated
multidrug-resistant bacteria (A. B.: A. baumannii; K. P.: Klebsiella pneumoniae; MIC of R10 and R20: >512 µg/mL against all the strains of bacteria tested); b
killing kinetics of A. baumannii 10073 at different concentrations as specified; c killing kinetics of E. coli 56809 at different concentrations as specified. The
antibiotic imipenem did not exert significant bactericidal activity against A. baumannii and E. coli after 1 and 3 h treatment, respectively, while the polymers
eradicated the bacteria rapidly. An increased polymer concentration led to faster killing efficiency. Error bars represent s.d. for n= 3

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03325-6 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:917 | DOI: 10.1038/s41467-018-03325-6 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


results with these polymers certainly warrant further in vivo
studies for the treatment of MDR infections.

Antimicrobial mechanism. To shed light on the mode of action
of the guanidinium-functionalized polycarbonate, a number of
techniques were employed to understand polymer-bacterial
membrane interaction and cause of efficient cell death with
high selectivity. Octanol–water partition study was first per-
formed using the fluorescent dye dansyl-labeled pEt_20 and
corresponding polycarbonate containing quaternary ammonium
(Supplementary Figure 6). Both polymers partitioned almost
exclusively into the aqueous phosphate-buffered saline (PBS)
layer as a consequence of the charged nature of the polymers.
However, upon the addition of a model surrogate for a
membrane-bound fatty acid salt (sodium laurate) into the octanol
layer, pEt_20 was seen to partition significantly into the octanol
layer with just 0.5 equivalents of sodium laurate. As the con-
centration of the fatty acid salt increased, pEt_20 was virtually
partitioned only within the octanol layer. In contrast, the qua-
ternary ammonium polymer stayed in the aqueous layer even at
2.0 equivalents of the fatty acid salt added. This finding showed
that pEt_20 effectively translocated into the membrane-mimic
lipophilic layer. Next, the integrity of bacterial membrane was
studied after treatment with pEt_20 or the membrane-lytic
polymyxin B by testing leakage of cytoplasmic materials (e.g.,
proteins and genes) with absorbance at 260 nm. No significant
leakage of cytoplasmic materials was detected from A. baumannii
cells after 2-h pEt_20 treatment at MBC (minimum bactericidal
concentration that leads to 99.9% bacteria killing in 2 h) and
below although leakage was seen at a higher concentration (2 ×
MBC) (Fig. 4). This indicated that pEt_20 killed the bacteria
without lysing membrane at the effective dose. In contrast, sig-
nificant membrane leakage was observed with polymyxin B
treatment even at 0.5 ×MBC.

The morphological changes in A. baumannii were further
observed under scanning electron microscopy (SEM) before and
after polymer treatment. No membrane lysis was seen in the
majority of the cells after 2-h treatment with either pEt_10 or
pEt_20 at 4 ×MIC, and only a few cells had distorted membrane
(Fig. 4a, b). Although prolonging the treatment time from 2 to 6 h
led to more cells with disrupted membrane, a larger population of
cells had an intact membrane (Supplementary Figure 7). Similar
phenomena were also observed under transmission electron
microscopy (TEM) after 2-h polymer treatment at 4 ×MIC and
16 ×MIC (Fig. 4c, d and Supplementary Figure 7). Particularly,
the TEM micrographs of polymer-treated bacteria revealed
precipitation of the bacterial cytoplasm with an intact membrane
in a larger population of the cells at both concentrations (see
arrows in Fig. 4c, d and Supplementary Figure 7), which was
likely caused by polymer interactions with cytoplasmic materials
(e.g., proteins and genes) upon membrane translocation.
Similarly, non-biodegradable broad-spectrum antimicrobial poly-
hexamethylene biguanide was recently reported to enter bacterial
cells, bind DNA and condense chromosome, leading to cell
death42. This unique antimicrobial mechanism provides the
polymers with higher potency and greater selectivity than
quaternary ammonium-containing polycarbonates that function
based on the membrane-disruption mechanism (Fig. 2)12, 19–22.
Moreover, another key consideration with this novel mechanism
over membrane lysis is the minimization of possibility of
septicemia from the rapid release of cytosolic content. This
distinctive mechanism warrants further investigation and will be
the topic of future studies as it distinguishes this new class of
polymers from antimicrobial peptides that have been widely
studied.

Prevention of resistance development. To investigate if repeated
use of the polymers with the unique antimicrobial mechanism
develops resistance, A. baumannii 10073 cells were treated with
pEt_10 or pEt_20 for 30 passages at sub-MIC concentrations and
MIC was determined in each passage of the bacteria. As shown in
Fig. 4e, repeated use of these polymers did not cause resistance
development in A. baumannii even after 30 passages, while
multiple treatments with imipenem at sublethal doses developed
resistance after 8 passages as a result of reduced antimicrobial
effect. A similar phenomenon was also observed previously for
the antibiotics gentamicin in E. coli43 and vancomycin in
MRSA25, and for gentamicin in K. pneumoniae as shown in
Supplementary Figure 8.

RNA-seq analysis of bacterial resistance. In order to system-
atically understand bacterial response to different xenobiotic
stress, i.e., antibiotic or polymer, bacterial RNA-seq was per-
formed on MDR A. baumannii 10073 cultures after 30 passages.
An MDR strain AB030 was used to recapitulate known imipenem
response genes as a proof of concept and to compare it to pEt_20
treatment. A total of 506 genes were differentially regulated
[Log2-fold change 1; 5% false discovery rate (FDR)] upon imi-
penem treatment relative to the untreated control (Supplemen-
tary Data 1 and Fig. 5). KEGG pathway analyses of the significant
genes implicated pathways that are involved in beta-lactam,
vancomycin, and cationic antimicrobial peptide resistances.
Importantly, the predominant efflux pump-mediated carbapenem
resistance genes from the resistance nodulation (RND) family,
i.e., adeA and adeB, were both upregulated upon imipenem
treatment44, 45. In addition, ftsI (penicillin binding protein 3) was
also shown to be differentially regulated, possibly conferring
carbapenem resistance46. We were also able to recapitulate some
of the known categories implicated in imipenem resistance
including quorum sensing and biofilm formation44, 47. However,
in the case of pEt_20, there were fewer differentially regulated
genes that were significant (n= 206; Supplementary Data 2,
Fig. 5, Log2-fold change 1; 5% FDR) and no apparent transcrip-
tional response in any known resistance pathways (KEGG data-
base) were observed relative to pEt_20 treatment.

A systematic comparison of imipenem and pEt_20 response
genes resulted in 47 common genes (Fig. 5a). Interestingly, a
majority (~78%) of these common genes show opposite patterns
for pEt_20 and imipenem treatments (Fig. 5b). Overall, the above
data suggest that imipenem and polymer response genes have
mutually exclusive functions, while the polymer has no observed
propensity for resistance development. This merits in effective
treatment possibilities for polymer-based antimicrobial agents to
combat resistance.

Evaluation of in vivo toxicity and immunogenicity. To evaluate
these polymers for in vivo application to treat drug-resistant
infections, LD50/LD5 (single lethal dose resulting in 50% and 5%
mice mortality, respectively) values of pEt_10 and pEt_20, were
first determined. No significant differences in toxicity were
observed with both polymers as evidenced by similar LD50 and
LD5 values (Fig. 6a). In addition, immunogenicity of the polymers
was evaluated in mouse peripheral blood mononuclear cells
(PBMCs) by testing secretion of the pro-inflammatory cytokines
IFN-γ and TNF-α by PBMCs after polymer treatment. The
secretion of the cytokines may result in undesirable non-specific
immunogenic response in vivo. The treatment with the bacterial
lipopolysaccharides (LPS) stimulated a high level of IFN-γ and
TNF-α secretion, while pEt_10 or pEt_20 treatment showed
negligible immunogenic response as compared to the negative
control without any treatment (Supplementary Figure 9).
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In vivo biodistribution and pharmacokinetics. From the bio-
distribution study of a NIR dye (AF750)-labeled pEt_20 (Sup-
plementary Figure 10), the polymer was found in mouse liver,
spleen, lungs, and kidneys after i.p. or i.v. injection, indicating
that the polymer penetrated tissues and got into the blood stream
even after i.p. injection. The pharmacokinetics study of the dye-
labeled polymer demonstrated its mean plasma elimination half-
life of ∼17 min (Supplementary Tables 4 and 5), which is com-
parable to (if not longer than) that of the clinically used anti-
biotics meropenem (6 min), imipenem (12 min), and doripenem
(12 min)48. Taken together with rapid killing kinetics (Fig. 3b, c,
Supplementary Figure 4, and Supplementary Figure 5), the
polymers have potential utility in vivo.

In vivo antimicrobial activity. The in vivo treatment efficacy of
the polymers was then investigated in A. baumannii 10073-, E. coli
56809-, K. pneumoniae 8637-, andMRSA 25312-induced peritonitis
mouse models. The minimum lethal doses of A. baumannii, E. coli,
K. pneumoniae, and MRSA sufficient to cause 100% mortality
within 48 h through intraperitoneal (i.p.) injection were pre-

determined: 2.7 × 108, 8.8 × 106, 2.6 × 108, and 5.2 × 108 CFU/mL
(0.5mL), respectively. Mice were inoculated with the bacteria at
their respective lethal doses by i.p. injection, and subsequently
treated with two i.p. injections of pEt_10, pEt_20, imipenem
(control for the Gram-negative bacteria), or vancomycin (control
for MRSA) at 1 and 6 h or 3 and 8 h post infection. Both polymers
demonstrated high treatment efficacy across all four infection
models with low ED50/ED95 (effective dose resulting in 50 and 95%
survival of infected mice) values, which were well below their LD5

values especially in A. baumannii infection (Fig. 6a), showing a wide
therapeutic window (e.g., therapeutic index—ED50/LD50: 1473 for
A. baumannii infection). Delay in the treatment by 2 h slightly
increased ED50/ED95 values. In imipenem-susceptible E. coli and
vancomycin-susceptible MRSA infections, the polymers had similar
ED50/ED95 as compared to the antibiotics. However, in imipenem-
resistant A. baumannii and K. pneumoniae infections, the polymers
displayed higher efficacy with lower ED50/ED95 than imipenem. In
addition, pEt_20 achieved better treatment efficacy than pEt_10
(lower ED50/ED95 for pEt_20). This may be in part attributable to
pEt_20’s superior bactericidal kinetics (Fig. 3b, c, Supplementary
Figure 4, and Supplementary Figure 5).

pEt_20 Imipenem

Imipenem/ctrl Imipenem/ctrlpEt_20/ctrl

Log2 FC Log2 FC Log2 FC
–1 –2 –50 0 01 2 23
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Beta-Lactam resistance

Cellular processes
Environmental information processing
Genetic information processing
Human diseases
Metabolism
Unclassified/not found in KEGG
Organismal systems
Vancomycin resistance
Xenobiotics biodegradation and metabolism

Cationic antimicrobial peptide (CAMP) resistance45947159

a

b

Fig. 5 RNA-seq analysis of bacterial resistance. MDR A. baumannii 10073 was treated with imipenem or pEt_20 for 30 passages at 0.5× MIC that was
measured at each passage (treatment duration of each passage: 18 h). a A Venn diagram depicting the overlap of differentially regulated genes either upon
pEt_20 or imipenem treatment, relative to untreated controls. The numbers inside the Venn diagram (from left to right) represent the number of
differentially regulated genes: found only in pEt_20 treatment (left), common to both groups (venn diagram intersection), only in imipenem treatment
(right), respectively. b The three independent heat maps depict genes from the corresponding groups in a (as indicated by the respective black arrows).
The heat map on the left shows expression data for genes that are only significant in pEt_20 treatment but were shown in conjunction with the expression
data from imipenem treatment (not differentially regulated, i.e., Log2-fold change in the range between −1 and +1). The heat map in the center depicts
significant genes that are shared by both treatment groups. The heat map on the right shows genes that are only significant in imipenem treatment along
with Log2-fold change from pEt_20 treatment (not differentially regulated but shown for comparison). The row color side bars on all three heat maps
represent the KEGG categories that the genes represent
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In vivo elimination efficiency of bacteria was subsequently assessed in
A. baumannii 10073- and E. coli 56809-induced peritonitis mouse
models. The polymers and imipenem effectively removed bacteria from
the blood, peritoneal fluid, and organs with >99.0–99.9% efficiency at
their respective ED95 doses as compared to the control without any
treatment at 24h post infection (Fig. 6b, c). Particularly, in the A.
baumannii infection, pEt_20 exhibited higher efficacy than imipenem
(Fig. 6b) primarily because pEt_20 had faster killing kinetics (Fig. 3b).
Effective removal of bacteria is key to ensuring survival against bacterial
sepsis. This limits the production and consequent circulation of
deleterious bacterial endo- and exo-toxins otherwise responsible for
septic shock and multi-organ dysfunction syndrome.

The treatment efficacy of polymer was further evaluated in a
cecal ligation and puncture (CLP)-induced polymicrobial perito-
nitis mouse model, the most commonly used sepsis model with
comparable features of peritonitis in humans, where a systemic
infection was induced by release of fecel material into peritoneal
cavity49. As there are both Gram-positive and Gram-negative
bacteria present in fecal material, the broad-spectrum antibiotic
gentamicin was used as control. With a single day treatment,
pEt_20 achieved comparable in vivo efficacy as compared to
gentamicin in terms of mouse survival (Fig. 7a) and bacterial
removal efficiency (Fig. 7b, c).

To demonstrate in vivo efficacy in treating a distal infection,
the polymer was used to treat a clinical strain of P. aeruginosa
(PA14)-caused lung infection in a mouse model by intravenous
injection (MIC of pEt_10 against PA14: 25 µg/mL; 8 mg/kg of
mouse body weight per injection, 3 i.v. injections at 1, 6, and 25 h
post infection). A single day treatment with pEt_10 saved five out
of six infected mice, while imipenem treatment saved four
infected mice (Fig. 7d). In addition, the polymer was more

effective in removing the bacteria from the blood and the lung
tissues (Fig. 7e, f).

More importantly, mice treated with the polymers at 8 mg/kg
mouse body weight, 0.2 mL per injection, twice daily for 3
consecutive days (48 mg/kg in total), which is close to the highest
dose used in this study (50 mg/kg), did not induce nephro- or
hepato-toxicity, nor any electrolyte disturbances (Supplementary
Table 6). There was also negligible hemolysis as evidenced by
normal blood potassium levels. This may be explained by
complete degradation of the polymer after 3 days (Supplementary
Figure 11), and negligible toxicity of the degradation products
(Supplementary Figure 12). These results suggest negligible
polymer toxicity especially when administered at their effective
dosages.

In this study, we have demonstrated high in vivo efficacy of the
guanidinium-functionalized polycarbonates with broad-spectrum
activity including MDR A. baumannii-, K. pneumonia-, E. coli-,
MRSA-, P. aeruginosa-, and CLP-induced polymicrobial systemic
infections, and P. aeruginosa lung infection. The multiple
treatments of bacteria with the polymers do not develop drug
resistance, owing to a distinctive new mechanism, as evidenced in
an in vitro evolution model and genetic sequencing. Polymer
treatment at the effective doses does not cause acute systemic
toxicity in vivo. It is envisaged that these polymers bear great
potential as antimicrobial agents in the prevention and treatment
of multidrug-resistant systemic infections.

Methods
Materials. N-(3,5-trifluoromethyl) phenyl-N′-cyclohexylthiourea (TU) was pre-
pared according to our previous protocol23, 24. TU was dissolved in dry tetra-
hydrofuran (THF), stirred with CaH2, filtered, and freed of solvent in vacuo. Prior
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to use, 1,8-diazabicyclo [5,4,0]undec-7-ene (DBU) was stirred over CaH2 and
vacuum distilled before being transferred to a glove box. All other chemical
reagents were purchased from Sigma-Aldrich and used as received unless specified.
Ultra pure (HPLC grade) water was obtained from J.T. Baker (USA). Phosphate-
buffered saline (PBS) at 10× concentration was purchased from first BASE (Sin-
gapore) and diluted to the intended concentrations before use. Cation-adjusted
Mueller–Hinton broth (MHB) powder was bought from BD Diagnostics (Singa-
pore) and used to prepare the microbial broths according to the manufacturer’s
instructions. Staphylococcus aureus (ATCC No. 6538), Escherichia coli (ATCC No.
25922), Pseudomonas aeruginosa (ATCC No. 9027), and yeast Candida albicans
(ATCC No. 10231) were obtained from ATCC (USA) and reconstituted according
to the suggested protocols. Clinically isolated MDR bacteria that were extracted
from blood or phlegm samples of the patients hospitalized in The First Affiliated
Hospital of Medical College, Zhejiang University (Hangzhou, China) were kindly
provided by Dr. Kaijin Xu. All isolates were identified by routine laboratory
methods and stored in 20% (v/v) glycerol at −80 °C prior to use. Drug suscept-
ibility of the bacteria was evaluated according to Clinical Laboratory Standards
Institute (CLSI) (Supplementary Table 2).

Synthesis of Boc-protected guanylated alcohol precursors. For the guanylation
of amino alcohols, a detailed protocol for the synthesis using ethanolamine as the
starting reagent is described as a representative example (Figure 1a). To a solution
mixture of ethanolamine (1.37 mL, 22.8 mmol, 2.0 equiv) and N,N-diisopropy-
lethylamine (DIPEA) (6.0 mL, 34.4 mmol, 3.0 equiv) was added 1,3-bis(tert-
butoxycarbonyl)-2-methyl-2-thiopseudourea (3.3 g, 11.6 mmol, 1.0 equiv) in 20 mL
of dry CH2Cl2, and the mixture was left to stir overnight at room temperature.
Upon reaction completion, a constant stream of nitrogen gas was bubbled through
the reaction mixture for ~1 h so as to aid in purging of the gaseous by-product,
MeSH. After the removal of residual solvent in vacuo, the crude product was
purified by flash column chromatography using silica gel and a hexane-ethyl
acetate solvent system as the eluent (gradient elution up to 50% vol. ethyl acetate)
to yield the Boc-protected guanylated alcohol (HO-Et-BocGua) as a white solid
(3.2 g, 10.4 mmol, 90% yield). 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.45 (s, 1H,
NH), 8.72 (s, 1H, NH), 3.77 (dd, J= 5.3, 3.9 Hz, 2H, –CH2–), 3.57 (dd, J= 9.2, 5.5
Hz, 2H, –CH2–), 1.49 (d, J= 8.2 Hz, 18H, Boc –CH3).

HO-Pr-BocGua: Yield: 87%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.44 (s, 1H,
NH), 8.47 (s, 1H, NH), 3.57 (dt, J= 12.1, 5.8 Hz, 4H, –CH2–), 1.72–1.66 (m, 2H,
–CH2–), 1.48 (d, J= 9.9 Hz, 18H, Boc –CH3).
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Fig. 7 In vivo efficacy in CLP and P. aeruginosa lung infection models. a–c Cecal ligation and puncture (CLP) model; d–f P. aeruginosa (PA14)-caused lung
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weight at 1 h and 6 h post infection; each dose lower than LD5 value) (n= 6, p= 0.0112 (<0.05), Log-rank test). bMicrobial counts (CFUs) in the blood and
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HO-But-BocGua: Yield: 90%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.48 (s,
1H, NH), 8.39 (s, 1H, NH), 3.69 (t, J= 6.1 Hz, 2H, –CH2–), 3.49–3.41 (m, 2H,
–CH2–), 1.71–1.59 (m, 4H, –CH2–), 1.49 (d, J= 2.3 Hz, 18H, Boc –CH3).

HO-Pen-BocGua: Yield: 89%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.49 (s,
1H, NH), 8.31 (s, 1H, NH), 3.64 (t, J= 6.5 Hz, 2H, –CH2–), 3.42 (td, J= 7.2, 5.4 Hz,
2H, –CH2–), 1.64–1.56 (m, 4H, –CH2–), 1.49 (d, J= 3.6 Hz, 18H, Boc –CH3), 1.43
(ddd, J= 12.4, 5.7, 3.0 Hz, 2H, –CH2–).

HO-Cy-BocGua: Yield: 82%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.53 (s, 1H,
NH), 8.24 (s, 1H, NH), 4.08–3.95 (m, 1H, –CH), 3.70–3.59 (m, 1H, –CH),
2.12–2.04 (m, 2H, –CH2–), 2.00–1.91 (m, 2H, –CH2–), 1.49 (d, J= 7.7 Hz, 18H,
Boc –CH3), 1.45–1.38 (m, 2H, –CH2–), 1.32–1.22 (m, 2H, –CH2–).

HO-Ph-BocGua: Yield: 72%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.62 (s, 1H,
NH), 9.95 (s, 1H, NH), 7.08–7.02 (m, 2H, Ph –CH), 6.63–6.53 (m, 2H, Ph –CH),
1.49 (d, J= 34.8 Hz, 18H, Boc –CH3).

HO-Bn-BocGua: Yield: 85%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.53 (s, 1H,
NH), 8.53 (s, 1H, NH), 7.19–7.09 (m, 2H, Ph –CH), 6.84–6.73 (m, 2H, Ph –CH),
4.52 (d, J= 5.1 Hz, 2H, –CH2–), 1.49 (d, J= 12.4 Hz, 18H, Boc –CH3).

Synthesis of MTC-OX-BocGua monomers. MTC-OX-BocGua was synthesized
with reference to the protocol reported in the previous work33 (Figure 1a). Briefly,
in a dry three-neck round bottom flask equipped with a stir bar, MTC-OH (3.08 g,
19.3 mmol) was dissolved in dry THF (50 mL) with a 3–4 drops of dimethylfor-
mamide (DMF). A solution of oxalyl chloride (2.45 mL, 28.5 mmol) in THF (50
mL) was subsequently added from a dropping funnel. Under an inert atmosphere,
the solution was stirred for 1 h, after which volatiles were removed under vacuum,
yielding an off-white solid (i.e., 5-chlorocarboxy-5-methyl-1,3-dioxan-2-one
intermediate). The solid was heated to 60 °C for a brief 2–3 min to remove any
residual solvent, and then re-dissolved in dry CH2Cl2 (50 mL) and cooled down to
0 °C via an ice bath. A mixture of the relevant Boc-protected guanylated alcohol
(e.g., HO-Et-BocGua, 5.4 g, 17.8 mmol) and pyridine (1.55 mL, 19.3 mmol) dis-
solved in dry CH2Cl2 (50 mL) was then added dropwise over a duration of 30 min,
and allowed to stir at 0 °C for an additional 30 min before leaving it at ambient
temperature for further stirring overnight. After removal of solvent, the crude
product was subjected to purification by flash column chromatography using silica
gel and a hexane-ethyl acetate solvent system as the eluent (gradient elution up to
80% vol. ethyl acetate) to yield MTC-OEt-BocGua as a white solid (78% yield). 1H-
NMR (400 MHz, CDCl3, 22 °C): δ 11.48 (s, 1H, NH), 8.64 (s, 1H, NH), 4.71 (d, J=
10.9 Hz, 2H, CHaHb), 4.33 (t, J= 5.2 Hz, 2H, –OCH2–), 4.22 (d, J= 10.9 Hz, 2H,
CHaHb), 3.77 (d, J= 5.1 Hz, 2H, –CH2N–), 1.49 (d, J= 1.8 Hz, 18H, Boc –CH3),
1.39 (d, J= 3.4 Hz, 3H, –CH3).

MTC-OPr-BocGua: Yield: 75%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.50 (s,
1H, NH), 8.40 (s, 1H, NH), 4.72 (d, J= 10.9 Hz, 2H, CHaHb), 4.26 (t, J= 6.1 Hz,
2H, –OCH2–), 4.21 (d, J= 10.9 Hz, 2H, CHaHb), 3.53 (dd, J= 12.5, 6.7 Hz, 2H,
–CH2N–), 1.99–1.91 (m, 2H, –CH2–), 1.49 (d, J= 1.7 Hz, 18H, Boc –CH3), 1.37 (s,
3H, –CH3).

MTC-OBut-BocGua: Yield: 75%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.44 (s,
1H, NH), 8.30 (t, J= 4.6 Hz, 1H, NH), 4.64 (d, J= 10.8 Hz, 2H, CHaHb), 4.20–4.14
(m, 4H, CHaHb and –OCH2–), 3.40 (dd, J= 12.4, 6.9 Hz, 2H, –CH2N–), 1.68 (dd, J
= 5.3, 3.0 Hz, 2H, –CH2–), 1.63–1.57 (m, 2H, –CH2–), 1.44 (s, 18H, Boc –CH3),
1.28 (s, 3H, –CH3).

MTC-OPen-BocGua: Yield: 79%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.50 (s,
1H, NH), 8.33 (s, 1H, NH), 4.68 (d, J= 10.8 Hz, 2H, CHaHb), 4.20 (m, J= 11.4, 4.5
Hz, 4H, CHaHb and –OCH2–), 3.43 (dd, J= 12.5, 6.8 Hz, 2H, –CH2N–), 1.70 (dd, J
= 14.8, 7.0 Hz, 2H, –CH2–), 1.63–1.58 (m, 2H, –CH2–), 1.50 (d, J= 3.6 Hz, 18H,
Boc –CH3), 1.46–1.38 (m, 2H, –CH2–), 1.34 (s, 3H, –CH3).

MTC-OCy-BocGua: Yield: 60%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.50 (s,
1H, NH), 8.31 (s, 1H, NH), 4.88–4.77 (m, 1H, –CH), 4.67 (d, J= 10.8 Hz, 2H,
CHaHb), 4.18 (d, J= 10.8 Hz, 2H, CHaHb), 4.14–4.01 (m, 1H, –CH), 2.09 (dd, J=
13.2, 3.3 Hz, 2H, –CH2–), 2.01–1.94 (m, 2H, –CH2–), 1.62–1.56 (m, 2H, –CH2–),
1.49 (d, J= 6.0 Hz, 18H, Boc –CH3), 1.42–1.32 (m, 2H, –CH2–), 1.31 (s, 3H, –CH3).

MTC-OPh-BocGua: Yield: 75%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.62 (s,
1H, NH), 10.40 (s, 1H, NH), 7.65 (d, J= 9.0 Hz, 2H, Ph –CH), 7.05 (d, J= 9.0 Hz,
2H, Ph –CH), 4.84 (d, J= 11.0 Hz, 2H, CHaHb), 4.31 (d, J= 10.9 Hz, 2H, CHaHb),
1.52 (d, J= 14.3 Hz, 21H, Boc –CH3 and –CH3).

MTC-OBn-BocGua: Yield: 78%; 1H-NMR (400MHz, CDCl3, 22 °C): δ 11.53 (s,
1H, NH), 8.67 (s, 1H, NH), 7.35 (dd, J= 6.6, 4.7 Hz, 2H, Ph –CH), 7.10–7.04 (m,
2H, Ph –CH), 4.84 (d, J= 11.0 Hz, 2H, CHaHb), 4.66 (d, J= 5.2 Hz, 2H, –CH2–),
4.32 (d, J= 10.9 Hz, 2H, CHaHb), 1.53–1.47 (m, 21H, Boc –CH3 and –CH3).

Synthesis of P(MTC-OX-BocGua) polymers. The detailed procedures for the
ring-opening polymerization (ROP) of MTC-OEt-BocGua with 4-methyl benzyl
alcohol as initiator are given as a representative example (Figure 1b). Using a glove
box, the 4-methyl benzyl alcohol (6.1 mg, 0.05 mmol) was added to a reaction vial
containing TU (18.5 mg, 0.05 mmol) and DBU (7.47 μL, 0.05 mmol) dissolved in
dry DCM (1mL) and left to stir for about 10 min. The mixture was subsequently
charged with MTC-OEt-BocGua (445 mg, 1.0 mmol) and left to stir at room
temperature for an additional 30 min. The reaction was stopped by quenching the
catalyst using an excess of benzoic acid (10 mg, 0.08 mmol). The crude polymer
was isolated and purified via preparative size-exclusion chromatography using THF
as the eluent. Upon removal of the solvent in vacuo, a transparent white solid was

obtained as the product, P(MTC-OEt-BocGua)_20 (79% yield). 1H-NMR (400
MHz, CDCl3, 22 °C): δ 11.47 (s, 22H, NH), 8.61 (bs, 22H, NH), 4.41–4.20 (m,
129H, CHaHb, CHaHb and –OCH2–), 3.79–3.65 (m, –CH2N–, overlapped with
residual THF peak), 2.34 (s, 3H, initiator –CH3), 1.47 (d, J= 14.3, 427H, Boc
–CH3), 1.24 (bs, 69H, –CH3).

P(MTC-OPr-BocGua)_20: Yield: 74%; 1H-NMR (400MHz, CDCl3, 22 °C): δ
11.49 (s, 18H, NH), 8.43 (bs, 18H, NH), 5.10 (s, 2H, initiator –CH2–), 4.36–4.25
(m, 69H, CHaHb and CHaHb), 4.23–4.17 (m, 39H, –OCH2–), 3.56–3.46 (m, 37H,
–CH2N–), 2.34 (s, 3H, initiator –CH3), 1.93 (m, 38H, –CH2–), 1.46 (d, J= 23.0 Hz,
386H, Boc –CH3), 1.24 (bs, 69H, -CH3).

P(MTC-OBut-BocGua)_20: Yield: 72%; 1H-NMR (400MHz, CDCl3, 22 °C): δ
11.50 (s, 18H, NH), 8.36 (bs, 18H, NH), 5.09 (s, 2H, initiator –CH2–), 4.29 (m,
66H, CHaHb and CHaHb), 4.14 (m, 35H, –OCH2–), 3.45 (m, 36H, –CH2N–), 2.34
(s, 3H, initiator –CH3), 1.72–1.63 (m, 71H, –CH2–), 1.53–1.41 (d, 363H, Boc
–CH3), 1.28–1.18 (bs, 57H, –CH3).

P(MTC-OPen-BocGua)_20: Yield: 70%; 1H-NMR (400MHz, CDCl3, 22 °C): δ
11.53 (s, 19H. NH), 8.41 (bs, 19H, NH), 5.12 (s, 2H, initiator –CH2–), 4.44–4.23
(m, 80H, CHaHb and CHaHb), 4.14 (m, 43H, –CH2–), 3.46 (m, 42H, –CH2–), 2.36
(s, 3H, initiator –CH3), 1.66 (m, 101H, –CH2–), 1.49 (d, J= 22.2, 4.7 Hz, 410H, Boc
–CH3), 1.48–1.34 (m, 70H, –CH2–), 1.26 (bs, 60H, –CH3).

P(MTC-OCy-BocGua)_20: Yield: 71%; 1H-NMR (400MHz, CDCl3, 22 °C): δ
11.53 (s, 19H, NH), 8.35 (bs, 18H, NH), 5.12 (s, 2H, initiator –CH2–), 4.80 (m,
19H, –CH), 4.37–4.22 (m, 69H, CHaHb and CHaHb), 4.10 (s, 19H, –CH2–), 2.37 (s,
3H, initiator –CH3), 2.10 (m, 41H, –CH2–), 1.96 (m, 40H, –CH2–), 1.64 (m, 40H,
–CH2–), 1.49 (d, J= 13.7 Hz, 416H, Boc -CH3), 1.38 (m, 43H, –CH2–), 1.23 (bs,
64H, –CH3).

P(MTC-OPh-BocGua)_20: Yield: 70%; 1H-NMR (400MHz, CDCl3, 22 °C): δ
11.64 (s, 16H, NH), 10.34 (bs, 16H, NH), 7.54 (m, 35H, Ph –CH), 7.04–6.97 (m,
36H, Ph –CH), 5.12 (s, 2H, initiator –CH2–), 4.67–4.16 (m, 88H, CHaHb and
CHaHb), 2.34 (s, 3H, initiator –CH3), 1.56–1.42 (m, 383H, Boc –CH3 and –CH3).

P(MTC-OBn-BocGua)_20: Yield: 70%; 1H-NMR (400MHz, CDCl3, 22 °C): δ
11.54 (s, 17H, NH), 8.61 (bs, 17H, NH), 7.30 (m, 35H, Ph –CH), 7.11–6.98 (m,
47H, Ph –CH), 5.12 (s, 2H, initiator –CH2–), 4.61 (m, 39H, –CH2–), 4.48 (m, 76H,
CHaHb and CHaHb), 2.35 (s, 3H, initiator –CH3), 1.55–1.41 (m, 464H, Boc –CH3

and –CH3).

Synthesis of deprotected P(MTC-OX-BocGua) polymers (P(MTC-OX-Gua)).
For the post-polymerization removal of Boc groups, an acid-mediated deprotection
strategy was adopted (Figure 1b). Briefly, P(MTC-OEt-BocGua)_20 (150 mg) was
dissolved in CH2Cl2 (9 mL) and trifluoroacetic acid (1 mL). The reaction mixture
was sealed and stirred at room temperature for 14–18 h. After the removal of
solvent in vacuo, slightly yellow waxy solid was obtained as the deprotected
guaninidium-functionalized polymer in quantitative yields. The polymer was
subsequently dissolved in water and lyophilized to yield a white transparent solid,
pEt_20. Complete deprotection was ascertained by 1H-NMR analysis. Yield: 87%;
1H-NMR (400MHz, CD3OD, 22 °C): δ 4.33 (s, 83H, CHaHb and CHaHb), 4.25 (m,
43H, –OCH2–), 3.56–3.48 (m, 45H, –CH2N–), 1.24 (bs, J= 30.2 Hz, 69H, –CH3).

pPr_20: Yield: 80%; 1H-NMR (400MHz, CD3OD, 22 °C): δ 4.32 (s, 70H,
CHaHb and CHaHb), 4.23 (m, 39H, –OCH2–), 3.28 (m, –CH2N–, overlapped with
residual H2O peak), 2.01–1.88 (m, 38H, –CH2–), 1.24 (bs, 61H, –CH3).

pBut_20: Yield: 81%; 1H-NMR (400MHz, CD3OD, 22 °C): δ 4.30 (m, 61H,
CHaHb and CHaHb), 4.18 (m, 36H, –OCH2–), 3.22 (m, 36H, –CH2N–), 1.77–1.64
(m, 69H, –CH2–), 1.23 (bs, 53H, –CH3).

pPen_20: Yield: 85%; 1H-NMR (400MHz, CD3OD, 22 °C): δ 4.31 (m, 78H,
CHaHb and CHaHb), 4.16 (m, 43H, –OCH2–), 3.20 (m, 42H, –CH2N–), 1.76–1.60
(m, 86H, –CH2–), 1.52–1.40 (m, 44H, –CH2–), 1.23 (bs, 65H, –CH3).

pCy_20: Yield: 82%; 1H-NMR (400MHz, CD3OD, 22 °C): δ 4.77 (m, 19H,
–CH), 4.37–4.19 (m, 70H, CHaHb and CHaHb), 3.45 (m, 20H, –CH), 2.00 (m, 77H,
–CH2–), 1.60–1.40 (m, 80H, –CH2–), 1.21 (bs, 58 H, -CH3).

pPh_20: Yield: 70%; 1H-NMR (400 MHz, CD3OD, 22 °C): δ 7.38–7.04 (m, 71H,
Ph –CH), 4.59–4.34 (m, 72H, CHaHb and CHaHb), 1.46–1.32 (m, 55H, –CH3).

pBn_20: Yield: 84%; 1H-NMR (400MHz, CD3OD, 22 °C): δ 7.28–7.39 (m, 39H,
Ph –CH), 7.16–7.03 (m, 40H, Ph –CH), 4.60–4.29 (m, 115H, CHaHb, CHaHb and
–CH2–), 1.47–1.30 (m, 60H, –CH3).

Octanol–water bilayer partitioning. Dansylated guanidinium (pEt_20)21 and
ammonium-functionalized polycarbonates were synthesized using a modified
dansyl alcohol initiator (Supplementary Figure 6). A stock aqueous solution (in
PBS) of the respective polymers was prepared to obtain a final concentration of 50
µM. To a 2-mL Eppendorf tube was added an aqueous solution of the polymer (0.5
mL) and octanol (0.5 mL). A series of sodium laurate (various concentrations of
0.5, 1.0, and 2.0 equiv per cationic group) in octanol solutions was prepared. The
bilayer mixture was then vortexed for 30 s, centrifuged (2000 rpm for 1 min) and
subsequently photographed under illumination from a UV lamp (wavelength: 365
nm).

Degradation study of pEt_20. The degradation study of pEt_20 was conducted in
PBS (pH 7.4) at 37 °C to mimic the physiological environment. PBS buffer was
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prepared in D2O, which allowed for 1H NMR analysis. The samples were taken out
at 24, 48, and 72 h for 1H NMR analysis.

Membrane integrity study. The minimum bactericidal concentration (MBC that
leads to 99.9% killing after 2-h treatment) of pEt_20 and polymyxin B against A.
baumannii was determined prior to the membrane integrity study. A. baumannii
10073 were suspended in PBS to a concentration of 2 × 109 CFU/mL. The polymer
pEt_20 or polymyxin B was added to the bacteria suspension to a concentration of
0.5 ×MBC, 1 ×MBC, and 2 ×MBC. The untreated bacteria suspension was
employed as control. The samples were incubated at 37 °C for 2 h, and were then
filtered with a 0.22 μm filter to harvest the supernatant. The supernatant was
subsequently measured for its absorbance using the Thermo Scientific NanoDrop
2000 spectrophotometer based on UV absorption at 260 nm. Each assay was
performed in triplicates, and the data were normalized against the absorbance of
supernatant of the untreated cells in PBS. The experiment was independently
repeated three times.

Drug resistance study and gene sequencing. Drug resistance was induced by
repeatedly treating A. baumannii 10073 with imipenem or pEt_20 at sublethal
doses50. The MIC of imipenem and pEt_20 against the bacteria at each passage was
measured using the broth microdilution method described in Supplementary
Methods. A. baumannii 10073 exposed to sub-MIC concentrations (1/2 of MIC at
that particular passage) were allowed to regrow and reach a logarithmic growth
phase before being used for MIC measurement of the subsequent passage.
Development of drug resistance in A. baumannii was evaluated over 30 passages by
recording changes in the MIC normalized to that of the first passage.

After treatment with pEt_20 or imipenem for 30 passages, the RNA samples of
the bacteria at 30 passages and the first passage were extracted, sequenced, and
analyzed. Briefly, total RNA was isolated from bacteria using the Trizol
(Invitrogen) according to the manufacture’s protocol. The purity of RNA samples
was assessed using the ND-1000 Nanodrop. RNA integrity was evaluated using the
Agilent 2200 TapeStation (Agilent Technologies, USA) and each sample has the
RINe above 7.0. Then, rRNAs were removed from the total RNA using Epicentre
Ribo-Zero rRNA Removal Kit (Illumina, USA) and fragmented to approximately
200 bp. The purified RNAs were subsequently subjected to first-strand and second-
strand cDNA synthesis, followed by adapter ligation and enrichment with a low
cycle according to the instructions from TruSeq® RNA LT/HT Sample Prep Kit
(Illumina, USA). The purified library products were evaluated using the Agilent
2200 TapeStation and Qubit®2.0 (Life Technologies, USA) and then diluted to 10
pM for cluster generation in situ on the HiSeq2500 pair-end flow cell, followed by
sequencing (2 × 100 bp) on HiSeq2500.

RNA-seq data analyses. Paired-end fastq files were mapped using BWA-MEM51

to the curated reference MDR strain AB030 [NZ_CP009257.1]. Mapped reads were
counted using HTSeq52. EdgeR Bioconductor package53 was used to assess dif-
ferential gene expression. All samples in each comparison (imipenem treatment
versus control or pEt_20 treatment versus control) were filtered for lowly
expressed/low coverage genes, i.e., rows with counts per million values (CPM) less
than 1 were removed and the library size was adjusted accordingly before nor-
malization. Differential gene expression was assessed after modeling for variability
in the data using moderated tagwise dispersion. P values are adjusted for multiple
hypothesis testing using Benjamini–Hochberg method and genes with adjusted p
values <0.05 were considered significant. Significant genes with at least a Log2-fold
change of 1 are presented in Supplementary Data 1 (imipenem/control) and
Supplementary Data 2 (pEt_20/control), respectively.

In vitro immunogenicity test. Peripheral blood mononuclear cells (PBMCs) were
isolated by a standard Ficoll-Hypaque density centrifugation technique (Ficoll-
paque Plus, GE Healthcare, Cat #10255485). Briefly, blood of 6–8 weeks old
C57BL/6 mice was collected in 1.5 mg/mL EDTA-K2 solution in the presence of
the anti-coagulant heparin. The samples were mixed with RPMI1640 medium
(1:1). Having added Ficoll-Paque (1:1 ratio), we centrifuged the solution at 500 × g
for 30 min and carefully aspirated mononuclear cell layer. Cells were washed twice
by RPMI1640 and were re-suspended in medium at a density of 4 × 106 cells/mL
and cultured in 24-well plates (2 × 106 cells per well) in 5% CO2 incubator at 37 °C
for 4 h. Then, cells were gently washed for three times by RPMI1640 medium to
remove non-adherent cells. PMBCs were numerated and recultured at 3 × 10 5/well
in 96-well plate and treated with pEt_10 and pEt_20 (100 μg/mL) as well as LPS
(100 ng/mL). After 2 days of treatment, cell supernatants were collected to measure
IFN-γ and TNF-α by ELISA (Invitrogen, Cat #4337757 and Cat #4341109).

Animals. ICR mice (female, 7 weeks old) and C57BL/6J mice (6–8 weeks old) were
used in the in vivo studies. Immunosuppression was induced by intraperitoneal
injection of 200 mg cyclophosphamide per kg of body weight 4 days before the
injection of bacteria. The animal study protocols were approved by the Institutional
Animal Care and Use Committee at the University of North Dakota.

Evaluation of LD50 and LD5. The ICR mice were randomly divided into five
groups (six per group). Each of the mice was injected intraperitoneally (i.p.) with
pEt_10 or pEt_20 at different doses (i.e., 42.0, 43.0, 44.0, 45.0, and 46.0 mg/kg, 0.2
mL/20 g). LD50 and LD5 values were estimated from the survival rate of treated
mice over 7 days using the BLISS method54.

Evaluation of ED50 and ED95. The ED50 and ED95 values of pEt_10 and pEt_20
were evaluated in MDR A. baumannii 10073-, E. coli 56809-, K. pneumoniae 8637-,
and MRSA 25312-induced peritonitis mouse models (ICR mice). Overnight cul-
tures of A. baumannii 10073, E. coli 56809, K. pneumoniae 8637, and MRSA 25312
were suspended in PBS. The cyclophosphamide-pretreated mice were injected
intraperitoneally (i.p.) with bacterial suspension at various doses (A. baumannii
10073: 8.0 × 107, 1.6 × 108, 2.4 × 108, 3.2 × 108 and 4.0 × 108 CFU/mL; E. coli 56809:
2.0 × 106, 4.0 × 106, 6.0 × 106, 8.0 × 106, and 1.0 × 107 CFU/mL; K. pneumoniae
8637: 6.7 × 107, 1.0 × 108, 1.5 × 108, 2.3 × 108 and 3.5 × 108 CFU/mL; MRSA 25312:
1.0 × 108, 2.0 × 108, 4.0 × 108 and 6.0 × 108 and 8.0 × 108 CFU/mL, 0.5 mL via i.p.
injection; Six to eight mice per group). The minimum lethal dose, which was
enough to cause 100% mortality, was determined based on the survival rate of
infected mice at 48 h post infection using the BLISS method54.

To evaluate ED50 and ED95 of the polymers, the immunosuppressed mice were
infected with A. baumannii 10073, E. coli 56809, K. pneumoniae 8637, or MRSA
25312 by injecting the corresponding bacterial suspension at the minimum lethal
dose to mice intraperitoneally (A. baumannii 10073: 2.7 × 108 CFU/mL; E. coli
56809: 8.8 × 106 CFU/mL; K. pneumoniae 8637: 2.6 × 108 CFU/mL; MRSA 25312:
5.2 × 108 CFU/mL; 0.5 mL per injection). The mice were divided into four groups
(six to eight mice per group), and injected with PBS, pEt_10, and pEt_20 and
imipenem i.p. at 1 and 6 h or 3 and 8 h post infection at various doses (A.
baumannii 10073 infection: 0.02, 0.05, 0.1, 0.2, and 0.5 mg/kg for the polymers; 0.1,
0.2, 0.5, 1.0, and 2.0 mg/kg for imipenem. E. coli 56809 infection: 0.1, 0.2, 0.5, 1.0,
and 2.0 mg/kg for the polymers and imipenem. K. pneumoniae 8637 infection: 0.5,
1.0, 2.0, 4.0, and 8.0 mg/kg for the polymers; 2.0, 4.0, 8.0, 16.0, and 32.0 mg/kg for
imipenem. MRSA 25312: 0.5, 1.0, 2.0, 4.0, and 8.0 mg/kg for the polymers and
vancomycin. 0.2 mL/20 g per injection). The BLISS method was employed to
estimate ED50 and ED95 based on the survival rate of the infected mice over
2 days54.

Bacteria count in the blood, abdominal cavity, and organs after polymer
treatment. The immunosuppressed ICR mice were injected i.p. with 0.5 mL of A.
baumannii 10073 or E. coli 56809 suspension at 2.0 × 108 and 8.0 × 106 CFU/mL,
respectively. The mice were then divided into four groups, and injected with PBS,
pEt_10, pEt_20, and imipenem at doses that saved 95% mice (ED95) (A. baumannii
10073 infection: 0.28, 0.15, and 2.7 mg/kg, respectively; E. coli 56809 infection: 3.3,
1.8, and 1.1 mg/kg, respectively) at 1 and 6 h post infection. At 24 h post infection,
five mice in each group were killed to obtain blood, peritoneal fluid, and organ
samples. For taking peritoneal fluid sample, 3.0 mL of PBS was injected into the
peritoneal cavity, and the abdomen area was then gently massaged. Peritoneal fluid
(2.0 mL per mouse) was recovered from the peritoneum of each mouse after the
abdomen was opened. Blood and peritoneal fluid samples were diluted and plated
on MH agar plates. At the same time, liver, spleen, and kidneys were removed and
homogenized in 2.0 mL of PBS. The homogenate was diluted and plated on MH
agar plates. After overnight incubation at 37 °C, the number of bacterial colonies
was counted. For the organs, the data are presented as lg (CFU/mL of
homogenate).

CLP-induced polymicrobial peritonitis mouse model. C57BL/6J mice (male and
female, 6–8 weeks, 18–22 g, Jackson Laboratory) were grouped randomly (WT-
without surgery or any treatment, Sham-with surgery but without CLP, CLP, CLP-
pEt_20, CLP-gentamicin, 6 mice in each group). Mice were fed with normal diet
for 12 h before surgery. Then mice were anesthetized with intramuscular (i.m.)
injection of ketamine (40 mg/kg of body weight), and the abdominal area was
disinfected. The cecum was exposed, ligatured at its external third, and punctured
with 27-gauge needle. The abdominal musculature and abdominal skin were closed
by applying simple suture. NaCl solution (0.9%, 1 mL) was injected i.p. to sup-
plement the lost moisture. After surgery, the mice were allowed to drink freely. In
the Sham group, the cecum was only exposed but not punctured, and was then
returned to the abdominal cavity. At 1 h post-CLP (all mice were able to move
normally), mice were injected i.p. with pEt_20 and gentamicin solution at 25 and
10 mg/kg, respectively. Another dose was given at 6 h post-CLP. The mice were
observed for survival using Kaplan–Meier curves [n= 6, p= 0.0112 (<0.05), Log-
rank test].

In another experiment (three mice in each group), mice were killed at 24 h post-
CLP. Blood and peritoneal fluid were collected for analysis of bacterial load.

Lung infection model. C57BL/6J mice (male and female, 6–8 weeks, 18–22 g,
Jackson Laboratory) were grouped randomly (control without infection or any
treatment, infection without any treatment, pEt_20 treated and imipenem treated,
6 mice in each group). Lung infection was established by intranasal instillation of P.
aeruginosa PA14 strain [a clinically isolated sample, kindly provided by George A
O’Toole (Dartmouth Medical School); 1 × 107 CFU]. The infected mice were
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treated with pEt_10 and imipenem at 1, 6, and 25 h post infection (8 mg/kg of
mouse body weight per injection for pEt_10 and 15 mg/kg of mouse body weight
per injection for imipenem). The mice were monitored for survival using
Kaplan–Meier curves [n= 6, p= 0.0214 (<0.05), Log-rank test].

In another experiment (three mice in each group), mice were killed at 72 h post
infection. Blood and the lung were collected for analysis of bacterial burden.

Biodistribution of pEt_20. The experiments were conducted in accordance with
the approved protocol from the IACUC at the Biological Resource Centre of
Singapore. Balb/c mice, with an average weight of 20 g, were used for this study.
The mice were divided into two groups and administrated with 1.3 mg/kg AF750-
conjugated polymer (synthesis in Supplementary Information) (in 200 µL of sterile
PBS) by i.v. or i.p. injection. The mice were killed at 4, 24 and 48 h post admin-
istration and organs including the brain, heart, liver, spleen, lungs, and kidneys
were excised and imaged using IVIS (Caliper Life Science, USA). The near-infrared
fluorescence was imaged using the ICG filter pairs and exposure time was set to 3 s.

Pharmacokinetics of pEt_20. The experiments were conducted in accordance
with the approved protocol from the Institutional Animal Care and Use Com-
mittee (IACUC) at the Biological Resource Centre of Singapore. Balb/c mice (n=
5) with an average weight of 20 g was injected with the AF750-conjugated
pEt_20 solution (1.3 mg/kg in 200 µL of sterile PBS) as a single bolus into the tail
vein. Blood was collected prior to administration of pEt_20 and at 2, 10, 15, 30, 60,
120, 240, and 480 min thereafter, and plasma was harvested by centrifugation at
1000 × g. Plasma samples were stored at −80 °C until analysis. The concentrations
of AF750-conjugated pEt_20 in the samples were determined by measuring the
fluorescence intensities at Ex/Em 749 nm/775 nm.

Statistical analysis. Analyses for difference between the treatment and control
arms were performed using one-way analysis of variance (ANOVA) and post hoc
Tukey’s test. P values of <0.05 were considered significant. Statistical calculations
were performed using SPSS software.

Data availability. Data supporting the findings of this study are available within
the article (and its Supplementary information files).
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