12 research outputs found

    An anti-noise algorithm based on locally linear embedding and weighted XGBoost for fault diagnosis of T/R module

    No full text
    Due to the noise accompanied with fault signals, it is challenging to identify the discriminant information and the local geometric feature from the complex fault data for enhancing fault diagnosis accuracy. To address this challenge, this work proposed an anti-noise algorithm based on locally linear embedding integrated with diffusion distance and maximum correntropy criterion (DMLLE). In DMLLE, diffusion distance was adopted instead of the Euclidean distance for neighborhood construction. Meanwhile, the optimal weights were updated to reveal local geometry information based on the loss function of the maximum correntropy criterion. Subsequently, DMLLE is eventually developed to further restrain noise embedding into raw signals and obtain low dimensional features. Furthermore, weighted extreme gradient boosting is used to map the low dimensional features to the types of faults, which easily implements fault pattern recognition. Finally, two synthetic manifold datasets and fault data acquired from the transmit/receive (T/R) module are used to validate the performance of the proposed diagnosis methodology. Compared with the existing methods, the proposed diagnosis methodology generates a smoother flow structure by preserving the local neighborhood of the dataset with noises and realizes a higher accuracy of 94.41% on the T/R module dataset, which outperforms 3%–9% better than other classification models. Therefore, it can be concluded that the proposed diagnosis methodology can effectively extract intrinsic fault features by weakening the influence aroused by noise and achieve superior accuracy in fault diagnosis by addressing the problem of small sample size

    Correlation Analysis between the Viral Load and the Progression of COVID-19

    No full text
    Objectives. This study is aimed at exploring the relationship of the viral load of coronavirus disease 2019 (COVID-19) with lymphocyte count, neutrophil count, and C-reactive protein (CRP) and investigating the dynamic change of patients’ viral load during the conversion from mild COVID-19 to severe COVID-19, so as to clarify the correlation between the viral load and progression of COVID-19. Methods. This paper included 38 COVID-19 patients admitted to the First Hospital of Jiaxing from January 28, 2020, to March 6, 2020, and they were clinically classified according to the Guidelines on the Novel Coronavirus-Infected Pneumonia Diagnosis and Treatment. According to the instructions of the Nucleic Acid Detection Kit for the 2019 novel coronavirus (SARS-CoV-2), respiratory tract specimens (throat swabs) were collected from patients for nucleic acid testing. Patients’ lymphocyte count and neutrophil count were determined by blood routine examination, and CRP was measured by biochemical test. Results. The results of our study suggested that the cycle threshold (Ct) value of Nucleocapsid protein (N) gene examined by nucleic acid test was markedly positively correlated with lymphocyte count (p=0.0445, R2=0.1203), but negatively correlated with neutrophil count (p=0.0446, R2=0.1167) and CRP (p=0.0393, R2=0.1261), which indicated that patients with a higher viral load tended to have lower lymphocyte count but higher neutrophil count and CRP. Additionally, we detected the dynamic change of Ct value in patients who developed into a severe case, finding that viral load of 3 patients increased before disease progression, whereas this phenomenon was not found in 2 patients with underlying diseases. Conclusion. The results of this study demonstrated that viral load of SARS-CoV-2 is significantly negatively correlated with lymphocyte count, but markedly positively correlated with neutrophil count and CRP. The rise of viral load is very likely to be the key factor leading to the overloading of the body’s immune response and resulting in the disease progression into severe disease

    Research on Adjustable Ring-Mode Fiber Signal Combiner

    No full text
    Nowadays, fiber laser has been widely used in industrial processing, especially in welding, cutting and other fields, and the appearance of adjustable ring-mode fiber laser improves effectively the quality of processing. In this paper, a (6 + 1) × 1 adjustable ring-mode fiber signal combiner is developed based on the technology of fiber cladding corrosion. The test results show that under the same injection condition, the beam quality transmitted through the central port of the combiner is degraded by only 8.3% compared with that transmitted through a single 50/250 μm fiber. It is proven to be feasible to maintain the beam quality of the (6 + 1) × 1 combiner by fiber corrosion technology. In order to improve the power of the central port of the (6 + 1) × 1 adjustable ring-mode combiner, a 3 × 1 fiber signal combiner and the central port of (6 + 1) × 1 combiner are cascaded. The output beam quality is M2 = 4.45 and the overall transmission efficiency is greater than 95%. This combiner can choose the mode of the output beam according to the actual application requirements, so as to achieve a better application effect

    Designation of Pump-Signal Combiner with Negligible Beam Quality Degradation for a 15 kW Tandem-Pumping Fiber Amplifier

    No full text
    In this paper, the fabrication method of a pump/signal (6 + 1) × 1 combiner based on a large-core (48 μm) multimode signal fiber is introduced. Since the signal fiber is not tapered in the production, and an effective feedback alignment method is adopted during the splice process, the degradation ratio of the M2 value of the signal light is only about 5% after passing through the beam combiner. In addition, with the help of a home-made beam combiner, a counter-directional tandem-pumping amplifier is built. The maximum output power of the amplifier is 15.31 kW with the slope efficiency of 83.2%. The temperature rise coefficient of the home-made combiner is 3.2 °C/kW and the backward isolation degree is more than 36 dB from each pump pigtail. Both test results prove the outstanding potential of the pump-signal combiner in high-power laser applications

    Potential biomarkers for diagnosis and disease evaluation of idiopathic pulmonary fibrosis

    No full text
    Abstract. Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by progressive lung fibrogenesis and histological features of usual interstitial pneumonia. IPF has a poor prognosis and presents a spectrum of disease courses ranging from slow evolving disease to rapid deterioration; thus, a differential diagnosis remains challenging. Several biomarkers have been identified to achieve a differential diagnosis; however, comprehensive reviews are lacking. This review summarizes over 100 biomarkers which can be divided into six categories according to their functions: differentially expressed biomarkers in the IPF compared to healthy controls; biomarkers distinguishing IPF from other types of interstitial lung disease; biomarkers differentiating acute exacerbation of IPF from stable disease; biomarkers predicting disease progression; biomarkers related to disease severity; and biomarkers related to treatment. Specimen used for the diagnosis of IPF included serum, bronchoalveolar lavage fluid, lung tissue, and sputum. IPF-specific biomarkers are of great clinical value for the differential diagnosis of IPF. Currently, the physiological measurements used to evaluate the occurrence of acute exacerbation, disease progression, and disease severity have limitations. Combining physiological measurements with biomarkers may increase the accuracy and sensitivity of diagnosis and disease evaluation of IPF. Most biomarkers described in this review are not routinely used in clinical practice. Future large-scale multicenter studies are required to design and validate suitable biomarker panels that have diagnostic utility for IPF

    Data from: Aquatic animals promote antibiotic resistance gene dissemination in water via conjugation: role of different regions within the zebra fish intestinal tract, and impact on fish intestinal microbiota

    No full text
    The aqueous environment is one of many reservoirs of antibiotic resistance genes (ARGs). Fish, as important aquatic animals which possess ideal intestinal niches for bacteria to grow and multiply, may ingest antibiotic resistance bacteria from aqueous environment. The fish gut would be a suitable environment for conjugal gene transfer including those encoding antibiotic resistance. However, little is known in relation to the impact of ingested ARGs or antibiotic resistance bacteria (ARB) on gut microbiota. Here, we applied the cultivation method, qPCR, nuclear molecular genetic marker and 16S rDNA amplicon sequencing technologies to develop a plasmid-mediated ARG transfer model of zebrafish. Furthermore, we aimed to investigate the dissemination of ARGs in microbial communities of zebrafish guts after donors carrying self-transferring plasmids that encode ARGs were introduced in aquaria. On average, 15% of faecal bacteria obtained ARGs through RP4-mediated conjugal transfer. The hindgut was the most important intestinal region supporting ARG dissemination, with concentrations of donor and transconjugant cells almost 25 times higher than those of other intestinal segments. Furthermore, in the hindgut where conjugal transfer occurred most actively, there was remarkable upregulation of the mRNA expression of the RP4 plasmid regulatory genes, trbBp and trfAp. Exogenous bacteria seem to alter bacterial communities by increasing Escherichia and Bacteroides species, while decreasing Aeromonas compared with control groups. We identified the composition of transconjugants and abundance of both cultivable and uncultivable bacteria (the latter accounted for 90.4%–97.2% of total transconjugants). Our study suggests that aquatic animal guts contribute to the spread of ARGs in water environments

    Comparison of dual- and triple-freeze protocols for pulmonary cryoablation in a Tibet pig model

    No full text
    The purpose of this study was to compare a dual-freeze protocol with a triple-freeze protocol for pulmonary cryoablation in a porcine lung model. Five dual- (10-5-10-5) and five triple-freeze (5-5-5-5-10-5) cryoablations were performed on an exposed operation field in normal porcine lung. Changes in the temperature of the cryoprobes and the diameter of the iceballs were measured during the ablation and pathologic changes in the cryozones (zones of tissue destruction) were reviewed 7 days after the procedure. The diameter of the iceball surface differed between the two protocols. Pathologically, the triple-freeze protocol was associated with a longer complete necrosis zone than the dual-freeze protocol, though the two protocols produced cryolesions and cryozones of similar length, and in both cases there were five areas of tissue destruction. With the same duration of freezing (20 min), the triple-freeze protocol may be better for pulmonary cryoablation than the dual-freeze protocol. (C) 2012 Elsevier Inc. All rights reserved

    Raw sequencing data of conjugative mixtures

    No full text
    This file gives the raw sequencing data of conjugative mixtures in zebrafish guts and feces, which provides information on the composition and abundance of transconjugants
    corecore