26 research outputs found

    Psychometric evaluation of the Chinese version of the fear of pregnancy scale: a translation and validation study

    Get PDF
    IntroductionMany women experience fear toward pregnancy, which can impact their desire to have children and the national birth rate. Thus, assessing women’s fear of pregnancy is of great importance. However, there is currently no specialized tool for assessing women’s fear of pregnancy in China. The purpose of this study is to translate the Fear of Pregnancy Scale into Chinese and test its reliability and validity among women of childbearing age.MethodsUsing convenience sampling combined with a snowballing method, a cross-sectional survey was conducted on 886 women of childbearing age in two cities in China. The translation was strictly carried out according to the Brislin model. Item analysis, validity analysis, and reliability analysis were employed for psychometric assessment.ResultsThe Chinese version of the Fear of Pregnancy Scale comprises 28 items. Exploratory factor analysis extracted four factors with a cumulative variance contribution rate of 72.578%. Confirmatory factor analysis showed: NFI = 0.956, CFI = 0.986, GFI = 0.927, IFI = 0.986, TLI = 0.985, RMSEA = 0.032, and χ2/df = 1.444. The scale’s Cronbach’s α coefficient is 0.957, split-half reliability is 0.840, and test–retest reliability is 0.932.ConclusionThe Chinese version of the Fear of Pregnancy Scale possesses robust psychometric properties and can assess the degree of pregnancy fear among Chinese women of childbearing age. It provides a reference for formulating relevant policies in the prenatal care service system and implementing targeted intervention measures

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Spray combustion characteristics of a gas-liquid pintle injector with variable swirl intensities

    No full text
    The present paper experimentally verified and computationally explained an improved design concept of the spray combustion of a gas-liquid pintle injector with variable swirl intensities. By pintle injector, we mean a promising injector for the throttleable engines with variable thrust capacities, which features the moveable pintle continuously controlling the mass flow rates of fuel and oxidizer where the radial and axial flows encounter to form a spray cone and spray atomization. First, the cold flow test was conducted to study the swirl effects on the spray angle, followed by the combustion test to study the total pressure and the specific impulse under different swirl intensities. The results show that the swirl enhances the combustion performance by increasing the total pressure and specific impulse. Second, the swirl-assisted spray was numerically simulated based on a validated volume-of-fluid method to explain the experimental findings. The diameter distribution and spatial distribution of dispersed droplets were analyzed by the Sauter mean diameter (SMD) and the Voronoi tessellation, respectively. The results show that the swirl significantly promotes the breakup of liquid jet or film, producing smaller SMDs and a more uniform spatial distribution of dispersed droplets. The consolidated correlation between the non-reacting spray characteristics and the combustion performance suggests that the proposed methodology can be used to fast prescreen pintle injector designs

    Nectin2 influences cell apoptosis by regulating ANXA2 expression in neuroblastoma

    No full text
    Neuroblastoma (NB) is a pediatric cancer of the peripheral sympathetic nervous system and represents the most frequent solid malignancy in infants. Nectin2 belongs to the immunoglobulin superfamily and has been shown to play a role in tumorigenesis. In the current study, we demonstrate that serum Nectin2 level is increased in NB patients compared with that in healthy controls and Nectin2 level is correlated with neuroblastoma international neuroblastoma staging system (INSS) classification. There is a positive correlation between Nectin2 level and shorter overall survival in NB patients. Knockdown of Nectin2 reduces the migration of SH-SY5Y and SK-N-BE2 cells and induces their apoptosis and cell cycle arrest. RNA-seq analysis demonstrates that Nectin2 knockdown affects the expressions of 258 genes, including 240 that are upregulated and 18 that are downregulated compared with negative controls. qRT-PCR and western blot analysis confirm that ANXA2 expression is decreased in Nectin2-knockdown SH-SY5Y cells, consistent with the RNA-seq results. ANXA2 overexpression rescues the percentage of apoptotic NB cells induced by Nectin2 knockdown and compensates for the impact of Nectin2 knockdown on cleaved caspase3 and bax expressions. In addition, western blot analysis results show that ANXA2 overexpression rescues the effect of Nectin2 knockdown on MMP2 and MMP9 expressions. The current data highlight the importance of Nectin2 in NB progression and the potential of Nectin2 as a novel candidate target for gene therapy

    Pb2+ biosorption from aqueous solutions by live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2.

    No full text
    In this study, the Pb2+ biosorption potential of live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2 was analyzed. Optimal biosorption conditions were determined via single factor optimization, which were as follows: temperature, 25°C; pH, 5.0, and biosorbent dose, 0.75 g L-1. A response surface software (Design Expert 10.0) was used to analyze optimal biosorption conditions. The biosorption data for live and dead biosorbents were suitable for the Freundlich model at a Pb2+ concentration of 200 mg L-1. At this same concentration, the maximum biosorption capacity was 88.74 mg g-1 (0.428 mmol g-1) for live biosorbents and 125.5 mg g-1 (0.606 mmol g-1) for dead biosorbents. Moreover, in comparison with the pseudo-first-order model, the pseudo-second-order model seemed better to depict the biosorption process. Dead biosorbents seemed to have lower binding strength than live biosorbents, showing a higher desorption capacity at pH 1.0. The order of influence of competitive metal ions on Pb2+ adsorption was Cu2+ > Cd2+ > Ni+. Fourier-transform infrared spectroscopy analyses revealed that several functional groups were involved in the biosorption process of dead biosorbents. Scanning electron microscopy showed that Pb2+ attached to the surface of dead biosorbents more readily than on the surface of live biosorbents, whereas transmission electron microscopy confirmed the transfer of biosorbed Pb2+ into the cells in the case of both live and dead biosorbents. It can thus be concluded that dead biosorbents are better than live biosorbents for Pb2+ biosorption, and they can accordingly be used for wastewater treatment

    Climate warming has changed phenology and compressed the climatically suitable habitat of Metasequoia glyptostroboides over the last half century

    No full text
    Climate warming is altering the climatically suitable habitat and phenology of plant species around the world, which may increase the risks of extinction for endangered species with extremely small populations (PSESP) plants. Metasequoia glyptostroboides is one of the critically endangered species with extremely small populations (PSESP) plants distributed in South-Central China. Here, we used meteorological station daily mean, maximum and minimum temperature data from 27 stations in the range of wild M. glyptostroboides and the phenology data for M. glyptostroboides to calculate the variation of growing season and climatically suitable habitat over the last half century (1960-2016). We found that the daily T-max, T-min, and T-mean within the M. glyptostroboides range increased significantly at a rate of 1.02 degrees C, 0.74 degrees C, and 0.68 degrees C per 100 years from 1960 to 2016. The average start of the growing season (GSS) had advanced 1.12 days/decade, the average end (GSE) had delayed 0.20 days/decade, and the length of the growing season (GSL) had expanded by 0.92 days/decade, while the active accumulated temperature (AAT) had increased 28.15 degrees.days/decade. The climatically suitable area contracted 1174.56 km(2) at the rate of 370.8 km(2)/decade, and the lower and upper elevation limits of the M. glyptostroboides were at 989-1170 m, which was shrank by 27 m over the past 57 years. It was confirmed that the climate warming in the range of wild M. glyptostroboides are intensifying over the last half century, and the warming had altered the phenology and compressed the climatically suitable habitat of M. glyptostroboides. So it is urgent to restore and protect the habitat of M. glyptostroboides in the face of ongoing climate warming. (C) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Potassium‐Rich Iron Hexacyanoferrate/Carbon Cloth Electrode for Flexible and Wearable Potassium‐Ion Batteries

    No full text
    Abstract The fast development of flexible and wearable electronics increases the demand for flexible secondary batteries, and the emerging high‐performance K‐ion batteries (KIBs) have shown immense promise for the flexible electronics due to the abundant and cost‐effective potassium resources. However, the implementation of flexible cathodes for KIBs is hampered by the critical issues of low capacity, rapid capacity decay with cycles, and limited initial Coulombic efficiency. To address these pressing issues, a freestanding K‐rich iron hexacyanoferrate/carbon cloth (KFeHCF/CC) electrode is designed and fabricated by cathodic deposition. This innovative binder‐free and self‐supporting KFeHCF/CC electrode not only provides continuous conductive channels for electrons, but also accelerates the diffusion of potassium ions through the active electrode–electrolyte interface. Moreover, the nanosized potassium iron hexacyanoferrate particles limit particle fracture and pulverization to preserve the structure and stability during cycling. As a result, the K‐rich KFeHCF/CC electrode shows a reversible discharging capacity of 110.1 mAh g−1 at 50 mA g−1 after 100 cycles in conjunction with capacity retention of 92.3% after 1000 cycles at 500 mA g−1. To demonstrate the commercial feasibility, a flexible tubular KIB is assembled with the K‐rich KFeHCF/CC electrode, and excellent flexibility, capacity, and stability are observed

    Targeted Introgression of a Wheat Stem Rust Resistance Gene by DNA Marker-Assisted Chromosome Engineering

    No full text
    Chromosome engineering is a useful strategy for transfer of alien genes from wild relatives into modern crops. However, this strategy has not been extensively used for alien gene introgression in most crops due to low efficiency of conventional cytogenetic techniques. Here, we report an improved scheme of chromosome engineering for efficient elimination of a large amount of goatgrass (Aegilops speltoides) chromatin surrounding Sr39, a gene that provides resistance to multiple stem rust races, including Ug99 (TTKSK) in wheat. The wheat ph1b mutation, which promotes meiotic pairing between homoeologous chromosomes, was employed to induce recombination between wheat chromosome 2B and goatgrass 2S chromatin using a backcross scheme favorable for inducing and detecting the homoeologous recombinants with small goatgrass chromosome segments. Forty recombinants with Sr39 with reduced surrounding goatgrass chromatin were quickly identified from 1048 backcross progenies through disease screening and molecular marker analysis. Four of the recombinants carrying Sr39 with a minimal amount of goatgrass chromatin (2.87–9.15% of the translocated chromosomes) were verified using genomic in situ hybridization. Approximately 97% of the goatgrass chromatin was eliminated in one of the recombinants, in which a tiny goatgrass chromosome segment containing Sr39 was retained in the wheat genome. Localization of the goatgrass chromatin in the recombinants led to rapid development of three molecular markers tightly linked to Sr39. The new wheat lines and markers provide useful resources for the ongoing global effort to combat Ug99. This study has demonstrated great potential of chromosome engineering in genome manipulation for plant improvement
    corecore