11 research outputs found

    Corrosion of diffusion zinc coatings in sodium chloride solutions

    Get PDF
    Diffusion galvanizing is widely used in the pipe industry for coating the threaded surface of pipe couplings, protecting water and gas pipelines, and other metal products. Diffusion coatings have a number of advantages over other types of zinc coatings. In this work, electrochemical and gravimetric methods are used to study the corrosion behavior of diffusion zinc coatings in sodium chloride solutions. The corrosion rate depends non-linearly on the thickness of the coating. At the initial stages, the corrosion rate of coatings depends on the structure of the phases on the surface, and with an increase in the holding time, the corrosion rate depends to a greater extent on the properties of the products formed during the corrosion process. Films of corrosion products of diffusion zinc coatings consist of zinc oxide/hydroxide and basic zinc salts, while the composition of the film changes with increasing coating thickness

    Extremely polysubstituted magnetic material based on magnetoplumbite with a hexagonal structure: Synthesis, structure, properties, prospects

    Full text link
    Crystalline high-entropy single-phase products with a magnetoplumbite structure with grains in the µm range were obtained using solid-state sintering. The synthesis temperature was up to 1400 °C. The morphology, chemical composition, crystal structure, magnetic, and electrodynamic properties were studied and compared with pure barium hexaferrite BaFe 12 O 19 matrix. The polysubstituted high-entropy single-phase product contains five doping elements at a high concentration level. According to the EDX data, the new compound has a formula of Ba(Fe6Ga1.25In1.17Ti1.21Cr1.22Co1.15)O19. The calculated cell parameter values were a = 5.9253(5) Å, c = 23.5257(22) Å, and V = 715.32(9) Å3. The increase in the unit cell for the substituted sample was expected due to the different ionic radius of Ti/In/Ga/Cr/Co compared with Fe3+. The electrodynamicmeasurements were performed. The dielectric and magnetic permeabilities were stable in the frequency range from 2 to 12 GHz. In this frequency range, the dielectric and magnetic losses were??0.2/0.2. Due to these electrodynamic parameters, this material can be used in the design of microwave strip devices. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Funding: The work was supported by the Russian Science Foundation, project No. 18-73-10049

    Flux Single Crystal Growth of BaFe12−xTixO19 with Titanium Gradient

    No full text
    Titanium substituted barium hexaferrite BaFe12−xTixO19 single crystal was grown by the top seeded solution growth method from flux on the seed with controlled cooling below 1175 °C. Titanium substitution level gradient in the single crystal in the vertical and horizontal directions was studied. Two planes were cut and polished. A justification for the linear gradient of Ti substitution in a BaFe12−xTixO19 single crystal is proposed; substitution levels in the center and periphery were determined. It was shown that upon growth by the top seeded solution growth method, crystals with a linear Ti substitution level gradient from x = 0.73 to x = 0.77 for a distance of 11 mm along pulling direction were obtained. The study led to the conclusion about the relationship of the gradient and changes in the composition of the nutrient solution

    Electromagnetic properties of BaFe12O19:Ti at centimeter wavelengths

    No full text
    BaFe12-xTixO19 (x = 0.5, 1, 2) solid solutions were synthesized by solid state reaction at 1350 °C for pure BaFe12O19 and 1400 °C for Ti-substituted samples for 3 h in the air. The phase purity of the final products was verified by X-ray diffraction. The decrease of Curie temperature of the solid solutions from 450 to 240 °C was induced by x changes from 0 to 2. The electromagnetic parameters of the BaFe12-xTixO19 (x = 0.5, 1, 2) ferrites were measured in the frequency range of 8–12 GHz using the transmission line method

    Extremely Polysubstituted Magnetic Material Based on Magnetoplumbite with a Hexagonal Structure: Synthesis, Structure, Properties, Prospects

    No full text
    Crystalline high-entropy single-phase products with a magnetoplumbite structure with grains in the μm range were obtained using solid-state sintering. The synthesis temperature was up to 1400 °C. The morphology, chemical composition, crystal structure, magnetic, and electrodynamic properties were studied and compared with pure barium hexaferrite BaFe12O19 matrix. The polysubstituted high-entropy single-phase product contains five doping elements at a high concentration level. According to the EDX data, the new compound has a formula of Ba(Fe6Ga1.25In1.17Ti1.21Cr1.22Co1.15)O19. The calculated cell parameter values were a = 5.9253(5) Å, c = 23.5257(22) Å, and V = 715.32(9) Å3. The increase in the unit cell for the substituted sample was expected due to the different ionic radius of Ti/In/Ga/Cr/Co compared with Fe3+. The electrodynamic measurements were performed. The dielectric and magnetic permeabilities were stable in the frequency range from 2 to 12 GHz. In this frequency range, the dielectric and magnetic losses were −0.2/0.2. Due to these electrodynamic parameters, this material can be used in the design of microwave strip devices

    Electromagnetic properties of BaFe12O19:Ti at centimeter wavelengths

    No full text
    BaFe12-xTixO19 (x = 0.5, 1, 2) solid solutions were synthesized by solid state reaction at 1350 °C for pure BaFe12O19 and 1400 °C for Ti-substituted samples for 3 h in the air. The phase purity of the final products was verified by X-ray diffraction. The decrease of Curie temperature of the solid solutions from 450 to 240 °C was induced by x changes from 0 to 2. The electromagnetic parameters of the BaFe12-xTixO19 (x = 0.5, 1, 2) ferrites were measured in the frequency range of 8–12 GHz using the transmission line method

    Polysubstituted High-Entropy [LaNd](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 Perovskites: Correlation of the Electrical and Magnetic Properties

    No full text
    La-, Nd- and La/Nd-based polysubstituted high-entropy oxides (HEOs) were produced by solid-state reactions. Composition of the B-site was fixed for all samples (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2) with varying of A-site cation (La, Nd and La0.5Nd0.5). Nominal chemical composition of the HEOs correlates well with initial calculated stoichiometry. All produced samples are single phase with perovskite-like structure. Average particle size is critically dependent on chemical composition. Minimal average particle size (~400 nm) was observed for the La-based sample and maximal average particle size (5.8 μm) was observed for the Nd-based sample. The values of the configurational entropy of mixing for each sample were calculated. Electrical properties were investigated in the wide range of temperatures (150–450 K) and frequencies (10−1–107 Hz). Results are discussed in terms of the variable range hopping and the small polaron hopping mechanisms. Magnetic properties were analyzed from the temperature and field dependences of the specific magnetization. The frustrated state of the spin subsystem was observed, and it can be a result of the increasing entropy state. From the Zero-Field-Cooling and Field-Cooling regimes (ZFC-FC) curves, we determine the <S> average and Smax maximum size of a ferromagnetic nanocluster in a paramagnetic matrix. The <S> average size of a ferromagnetic cluster is ~100 nm (La-CMFCNO) and ~60 nm (LN-CMFCNO). The Smax maximum size is ~210 nm (La-CMFCNO) and ~205 nm (LN-CMFCNO). For Nd-CMFCNO, spin glass state (ferromagnetic cluster lower than 30 nm) was observed due to f-d exchange at low temperatures

    Preparation, phase stability, and magnetization behavior of high entropy hexaferrites

    No full text
    Summary: The polycrystalline SrFe12O19 samples deeply substituted up to at.67% by Al3+, Ga3+, In3+, Co3+, and Cr3+ cations with a high configurational mixing entropy were prepared by solid-phase synthesis. Phase purity and unit cell parameters were obtained from XRD and analyzed versus the average ionic radius of the iron sublattice. The crystallite size varied around ∼4.5 μm. A comprehensive study of the magnetization was realized in various fields and temperatures. The saturation magnetization was calculated using the Law of Approach to Saturation. The accompanying magnetic parameters were determined. The magnetic crystallographic anisotropy coefficient and the anisotropy field were calculated. All investigated magnetization curves turned out to be nonmonotonic. The magnetic ordering and freezing temperatures were extracted from the ZFC and FC curves. The average size of magnetic clusters varied around ∼350 nm. The high values of the configurational mixing entropy and the phenomenon of magnetic dilution were taken into account
    corecore