532 research outputs found

    5-Fluorouracil signaling through a calcium-calmodulin-dependent pathway is required for p53 activation and apoptosis in colon carcinoma cells

    Get PDF
    5-Fluorouracil (5-FU) is an anti-metabolite that is in clinical use for treatment of several cancers. In cells, it is converted into three distinct fluoro-based nucleotide analogs, which interfere with DNA synthesis and repair, leading to genome impairment and, eventually, apoptotic cell death. Current knowledge states that in certain cell types, 5-FU-induced stress is signaling through a p53-dependent induction of tumor necrosis factor-receptor oligomerization required for death-inducing signaling complex formation and caspase-8 activation. Here we establish a role of calcium (Ca 2+) as a messenger for p53 activation in response to 5-FU. Using a combination of pharmacological and genetic approaches, we show that treatment of colon carcinoma cells stimulates entry of extracellular Ca 2+ through long lasting-type plasma membrane channels, which further directs posttranslational phosphorylation of at least three p53 serine residues (S15, S33 and S37) by means of calmodulin (CaM) activity. Obstructing this pathway by the Ca 2+ -chelator BAPTA (1,2-bis(o-aminophenoxy)ethane- N,N,N',N'-tetraacetic acid) or by inhibitors of CaM efficiently reduces 5-FU-induced caspase activities and subsequent cell death. Moreover, ectopic expression of p53 S15A in HCT116 p53 -/- cells confirmed the importance of a Ca 2+ -CaM-p53 axis in 5-FU-induced extrinsic apoptosis. The fact that a widely used therapeutic drug, such as 5-FU, is operating via this pathway could provide new therapeutic intervention points, or specify new combinatorial treatment regimes. © 2013 Macmillan Publishers Limited.Swedish Science Foundation; Swedish and Stockholm Cancer Societies; Swedish Childhood Cancer Foundation; EC-FP-6 (Chemores); EC-FP-7 (APO-SYS

    RasGTPase-activating protein is a target of caspases in spontaneous apoptosis of lung carcinoma cells and in response to etoposide

    Get PDF
    p120 RasGTPase-activating protein (RasGAP), the main regulator of Ras GTPase family members, is cleaved at low caspase activity into an N-terminal fragment that triggers potent anti-apoptotic signals via activation of the Ras/PI-3 kinase/Akt pathway. When caspase activity is increased, RasGAP fragment N is further processed into two fragments that effectively potentiate apoptosis. Expression of RasGAP protein and its cleavage was assessed in human lung cancer cells with different histology and responsiveness to anticancer drug-induced apoptosis. Here we show that therapy-sensitive small lung carcinoma cell (SCLC) lines have lower RasGAP expression levels and higher spontaneous cleavage with formation of fragment N compared to therapy-resistant non-small cell lung carcinoma cell (NSCLC) lines. The first RasGAP cleavage event strongly correlated with the increased level of spontaneous apoptosis in SCLC. However, generation of protective RasGAP fragment N also related to the potency of SCLC to develop secondary therapy-resistance. In response to etoposide (ET), RasGAP fragment N was further cleaved in direct dependence on caspase-3 activity, which was more pronounced in NSCLC cells. Caspase inhibition, while effectively preventing the second cleavage of RasGAP, barely affected the first cleavage of RasGAP into fragment N that was always detectable in NSCLC and SCLC cells. These findings suggest that different levels of RasGAP and fragment N might play a significant role in the biology and different clinical course of both subtypes of lung neoplasms. Furthermore, constitutive formation of RasGAP fragment N can potentially contribute to primary resistance of NSCLC to anticancer therapy by ET but also to secondary therapy-resistance in SCLC

    Non-linear regression models for Approximate Bayesian Computation

    Full text link
    Approximate Bayesian inference on the basis of summary statistics is well-suited to complex problems for which the likelihood is either mathematically or computationally intractable. However the methods that use rejection suffer from the curse of dimensionality when the number of summary statistics is increased. Here we propose a machine-learning approach to the estimation of the posterior density by introducing two innovations. The new method fits a nonlinear conditional heteroscedastic regression of the parameter on the summary statistics, and then adaptively improves estimation using importance sampling. The new algorithm is compared to the state-of-the-art approximate Bayesian methods, and achieves considerable reduction of the computational burden in two examples of inference in statistical genetics and in a queueing model.Comment: 4 figures; version 3 minor changes; to appear in Statistics and Computin

    Inorganic mercury modifies Ca2+ signals, triggers apoptosis and potentiates NMDA toxicity in cerebellar granule neurons

    Get PDF
    Hg2+ (0.1 microM-0.5 microM) modified the Ca2+ signals elicited by either KCl or the glutamate-receptor agonist, N-methyl-D-aspartate (NMDA), in cerebellar granule cells (CGCs). Hg2+ enhanced the intracellular Ca2+ transient elicited by high K+ and prevented a complete recovery of the resting intracellular Ca2+ concentration ([Ca2+]i) after either KCl or NMDA stimulation. Higher Hg2+ concentrations (up to 1 microM) increased [Ca2+]i directly. Following the short-term exposure to Hg2+, CGCs underwent apoptosis, which was identified by the cleavage of DNA into large (700-50 kbp) and oligonucleosomal DNA fragments, and by the appearance of typical apoptotic nuclei. Combined treatment with 0.1-0.3 microM Hg2+ and a sublethal NMDA concentration (50 microM) potentiated DNA fragmentation and apoptotic cell death. When the exposure to Hg2+ was carried out in Ca2+-free media or in the presence of Ca2+ channel blockers (L-type or NMDA-R antagonists), the effects on signalling and apoptosis were prevented. Our results suggest that very low Hg2+ concentrations can trigger apoptosis in CGCs by facilitating Ca2+ entry through membrane channels

    An Evolutionary Reduction Principle for Mutation Rates at Multiple Loci

    Full text link
    A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models. A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface - a generalization of the hyperplane found by Zhivotovsky et al. (1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance. Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.Comment: v3: Final corrections. v2: Revised title, reworked and expanded introductory and discussion sections, added corollaries, new results on modifier polymorphisms, minor corrections. 49 pages, 64 reference

    Systems biologists seek fuller integration of systems biology approaches in new cancer research programs

    Get PDF
    Systems biology takes an interdisciplinary approach to the systematic study of complex interactions in biological systems. This approach seeks to decipher the emergent behaviors of complex systems rather than focusing only on their constituent properties. As an increasing number of examples illustrate the value of systems biology approaches to understand the initiation, progression, and treatment of cancer, systems biologists from across Europe and the United States hope for changes in the way their field is currently perceived among cancer researchers. In a recent EU-US workshop, supported by the European Commission, the German Federal Ministry for Education and Research, and the National Cancer Institute of the NIH, the participants discussed the strengths, weaknesses, hurdles, and opportunities in cancer systems biology

    Extended Y chromosome haplotypes resolve multiple and unique lineages of the Jewish priesthood

    Get PDF
    It has been known for over a decade that a majority of men who self report as members of the Jewish priesthood (Cohanim) carry a characteristic Y chromosome haplotype termed the Cohen Modal Haplotype (CMH). The CMH has since been used to trace putative Jewish ancestral origins of various populations. However, the limited number of binary and STR Y chromosome markers used previously did not provide the phylogenetic resolution needed to infer the number of independent paternal lineages that are encompassed within the Cohanim or their coalescence times. Accordingly, we have genotyped 75 binary markers and 12 Y-STRs in a sample of 215 Cohanim from diverse Jewish communities, 1,575 Jewish men from across the range of the Jewish Diaspora, and 2,099 non-Jewish men from the Near East, Europe, Central Asia, and India. While Cohanim from diverse backgrounds carry a total of 21 Y chromosome haplogroups, 5 haplogroups account for 79.5% of Cohanim Y chromosomes. The most frequent Cohanim lineage (46.1%) is marked by the recently reported P58 T->C mutation, which is prevalent in the Near East. Based on genotypes at 12 Y-STRs, we identify an extended CMH on the J-P58* background that predominates in both Ashkenazi and non-Ashkenazi Cohanim and is remarkably absent in non-Jews. The estimated divergence time of this lineage based on 17 STRs is 3,190 ± 1,090 years. Notably, the second most frequent Cohanim lineage (J-M410*, 14.4%) contains an extended modal haplotype that is also limited to Ashkenazi and non-Ashkenazi Cohanim and is estimated to be 4.2 ± 1.3 ky old. These results support the hypothesis of a common origin of the CMH in the Near East well before the dispersion of the Jewish people into separate communities, and indicate that the majority of contemporary Jewish priests descend from a limited number of paternal lineages

    Caspase-2 is upregulated after sciatic nerve transection and its inhibition protects dorsal root ganglion neurons from Apoptosis after serum withdrawal

    Get PDF
    Sciatic nerve (SN) transection-induced apoptosis of dorsal root ganglion neurons (DRGN) is one factor determining the efficacy of peripheral axonal regeneration and the return of sensation. Here, we tested the hypothesis that caspase-2(CASP2) orchestrates apoptosis of axotomised DRGN both in vivo and in vitro by disrupting the local neurotrophic supply to DRGN. We observed significantly elevated levels of cleaved CASP2 (C-CASP2), compared to cleaved caspase-3 (C-CASP3), within TUNEL+DRGN and DRG glia (satellite and Schwann cells) after SN transection. A serum withdrawal cell culture model, which induced 40% apoptotic death in DRGN and 60% in glia, was used to model DRGN loss after neurotrophic factor withdrawal. Elevated C-CASP2 and TUNEL were observed in both DRGN and DRG glia, with C-CASP2 localisation shifting from the cytosol to the nucleus, a required step for induction of direct CASP2-mediated apoptosis. Furthermore, siRNAmediated downregulation of CASP2 protected 50% of DRGN from apoptosis after serum withdrawal, while downregulation of CASP3 had no effect on DRGN or DRG glia survival. We conclude that CASP2 orchestrates the death of SN-axotomised DRGN directly and also indirectly through loss of DRG glia and their local neurotrophic factor support. Accordingly, inhibiting CASP2 expression is a potential therapy for improving both the SN regeneration response and peripheral sensory recovery

    Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid

    Get PDF
    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria
    corecore