15 research outputs found

    Evemphyron sinense, a new genus and species infesting legume seedpods in China (Coleoptera, Attelabidae, Rhynchitinae)

    Get PDF
    A new genus Evemphyron Alonso-Zarazaga, Lv & Wang, gen. n., belonging to Attelabidae Rhynchitinae, is described. Its single species, Evemphyron sinense Alonso-Zarazaga, Lv & Wang, sp. n., was reared from larvae found inside seed pods of the legume Callerya dielsiana (Fabaceae, Millettieae) in Sichuan Province (China). The species is figured and placed in the Deporaini because of the presence of minute labial palpi, the strongly crescentic apex of the postmentum, and the apodemes of male IX sternite and female VIII sternite curved sinistro-anterially near their cephalic end. It shows 3-segmented labial palpi and male sex patches on the procoxae, characters that suggest a basal position in the tribe.Peer Reviewe

    Association between endometrial blood and clinical outcome in frozen single blastocyst transfer cycles

    Get PDF
    Background: The success of embryo transfer cycle depends mainly on the quality of embryo and endometrial receptivity. Ultrasound examination is still the most widely used non-invasive evaluation method for its advantages of convenience, non-invasiveness and repeatability. Ultrasound-measured endometrial blood flow is one of the important evaluation indicators of morphology.Aims: To investigate the effect of the number of endometrial blood flow branches on pregnancy outcome of frozen-thawed embryo transfer cycles which have undergoing hormone replacement therapy (HRT-FET).Material and methods: A retrospective cohort study was performed looking at a total of 1390 HRT-FET cycles from our reproductive medicine center between January 2017 to December 2021, which transferred one blastocyst frozen on day 5 with good quality in morphology. Associations between endometrial blood flow branches and pregnancy outcomes were evaluated with multivariable linear regression analysis.Results: The number of endometrial blood flow branches was independently associated with clinical pregnancy (OR 1.10; 95% CI 1.02–1.20). After adjusting for potential confounders, the effect size (odds ratio) was 1.09 (95% CI 1.00–1.19), and the results showed that the clinical pregnancy rate and live birth rate of T2 and T3 groups were significantly higher than those in group T1 (p < 0.05). Subgroup analysis showed that a consistent association between the endometrial blood flow branches and clinical pregnancy in all subgroups.Conclusion: Our study provided evidence for the influence of endometrial blood flow on pregnancy outcomes. There may be an independent association between the number of endometrial blood flow branches and pregnancy outcomes in frozen-thawed single blastocyst transfer cycles

    Activity Rhythms of Coexisting Red Serow and Chinese Serow at Mt. Gaoligong as Identified by Camera Traps

    No full text
    Surveying the activity rhythms of sympatric herbivorous mammals is essential for understanding their niche ecology, especially for how they partition resources and their mechanisms of coexistence. Over a five-year period, we conducted infrared camera-trapping to monitor the activity rhythms of coexisting red serow (Capricornis rubidus) and Chinese serow (C. milneedwardsii milneedwardsii) in the remote mountainous region of Pianma, Mt. Gaoligong, Yunnan, China. Cameras captured images of red serow and Chinese serow on 157 and 179 occasions, respectively. We used circular kernel density models to analyze daily activity rhythms and how temporal variations in activity ensure their co-existence. Although their overall activity levels and patterns were similar, temporal activity and behavior partitioning among the two species occurred during the wet season. Compared with Chinese serows, red serows exhibited less variable daily activity levels, patterns, as well as feeding and vigilance behaviors between seasons. When the two species occasionally ranged together, red serows tended to alter their activity pattern while Chinese serows significantly increased their activity level. Red serow and Chinese serow are exploitative competitors but coexist by altering their daily activity rhythms when in contact and changing activity patterns during the wet season, enabling their coexistence

    Fine-Scale Interactions between Leopard Cats and Their Potential Prey with Contrasting Diel Activities in a Livestock-Dominated Nature Reserve

    No full text
    Habitat use and the temporal activities of wildlife can be largely modified by livestock encroachment. Therefore, identifying the potential impacts of livestock on the predator–prey interactions could provide essential information for wildlife conservation and management. From May to October 2017, we used camera trapping technology to investigate fine-scale spatiotemporal interactions in a predator–prey system with the leopard cat (Prionailurus bengalensis) as a common mesopredator, and its prey with contrasting activity patterns (i.e., nocturnal rats and diurnal squirrels) in a livestock-dominated nature reserve in Northern China. We found that the prey species showed different habitat preferences with the leopard cats. The nocturnal rats had strong positive effects on the site-use of the leopard cats, while the influence of livestock on the diurnal squirrels’ site-use changed from strong positive effects to weak effects as the livestock disturbance increased. The temporal overlap between the leopard cats and the nocturnal rats was almost four times that of the leopard cats and the diurnal squirrels, regardless of the livestock disturbance. Our study demonstrated that the fine-scale spatiotemporal use patterns of the leopard cats were consistent and highly correlated with the nocturnal rats under livestock disturbance. We suggest that appropriate restrictions on livestock disturbance should be implemented by reserve managers to reduce the threat to wildlife and achieve multi-species coexistence

    Analysis of Ice Storm Impact on and Post-Disaster Recovery of Typical Subtropical Forests in Southeast China

    No full text
    Ice storms greatly affect the structure, dynamics, and functioning of forest ecosystems. Studies on the impact of such disasters, as well as the post-disaster recovery of forests, are important contents in forest biology, ecology, and geography. Remote-sensing technology provides data and methods that can support the study of disasters at the large-to-medium scale and over long time periods. This study took Chebaling National Nature Reserve in Guangdong Province, China, as the study area. First, field-survey data and remote-sensing data were comprehensively analyzed to demonstrate the feasibility of replacing the forest stock volume with the mean annual value of the Enhanced Vegetation Index (EVI), to study forest growth and change. We then used the EVI from 2007 to 2017, together with a variety of other remote-sensing and forest sub-compartment data, to analyze the impact of the 2008 ice storm and the subsequent post-disaster recovery of the forest. Finally, we drew the following conclusions: (1) Topography had a considerable effect on disaster impact and forest recovery in Chebaling. The forest at high altitudes (700–1000 m) and on steep slopes (25–40°) was seriously affected by this disaster but had a stronger post-disaster recovery ability. Meanwhile, the hardest-hit area for coniferous forest was higher and steeper than that for broad-leaved forest. (2) In the same terrain conditions, coniferous forests were less affected by the disaster than broad-leaved forests and showed less variation during the post-disaster recovery process. Nevertheless, broad-leaved forests had faster recovery rates and higher recovery degrees; (3) Under the influence of human activities, the recovery and fluctuation degree for planted forest in the post-disaster recovery process was significantly higher than that for natural forest. The study suggests that forest has high disaster resistance and self-recovery ability after the ice storm, and this ability has a strong correlation with the type of forest and the topographic factors such as elevation and slope. At the same time, human intervention can speed up the recovery of forests after disasters

    Seed-predator satiation and Janzen-Connell effects vary with spatial scales for seed-feeding insects.

    No full text
    Background and aimsThe Janzen-Connell model predicts that common species suffer high seed predation from specialized natural enemies as a function of distance from parent trees, and consequently as a function of conspecific density, whereas the predator satiation hypothesis predicts that seed attack is reduced due to predator satiation at high seed densities. Pre-dispersal predation by insects was studied while seeds are still on parent trees, which represents a frequently overlooked stage in which seed predation occurs.MethodsReproductive tree density and seed production were investigated from ten Quercus serrata populations located in south-west China, quantifying density-dependent pre-dispersal seed predation over two years by three insect groups.Key resultsAcorn infestation was nearly twice as high in the low-seed year as that in the high-seed year, with considerable spatio-temporal variation in the direction and magnitude of density-dependent pre-dispersal seed predation evident. Across whole populations of trees, a high density of reproductive trees caused predator satiation and reduced insect attack in the high-seed year. Within individual trees, and consistent with the Janzen-Connell model, overall insect seed predation was positively correlated with seed production in the low-seed year. In addition, there was variation among insect taxa, with positive density-dependent seed predation by Curculio weevils in the high-seed year and moths in the low-seed year, but apparent density independence by Cyllorhynchites weevils in both years.ConclusionsThe overall trend of negative density-dependent, pre-dispersal seed predation suggests that predator satiation limited the occurrence of Janzen-Connell effects across Q. serrata populations. Such effects may have large impacts on plant population dynamics and tree diversity, depending on the extent to which they are reduced by counteracting positive density-dependent predation for seeds on individual trees and other factors affecting successful recruitment
    corecore