666 research outputs found

    An Extended Virtual Aperture Imaging Model for Through-the-wall Sensing and Its Environmental Parameters Estimation

    Get PDF
    Through-the-wall imaging (TWI) radar has been given increasing attention in recent years. However, prior knowledge about environmental parameters, such as wall thickness and dielectric constant, and the standoff distance between an array and a wall, is generally unavailable in real applications. Thus, targets behind the wall suffer from defocusing and displacement under the conventional imag¬ing operations. To solve this problem, in this paper, we first set up an extended imaging model of a virtual aperture obtained by a multiple-input-multiple-output array, which considers the array position to the wall and thus is more applicable for real situations. Then, we present a method to estimate the environmental parameters to calibrate the TWI, without multiple measurements or dominant scatter¬ers behind-the-wall to assist. Simulation and field experi¬ments were performed to illustrate the validity of the pro¬posed imaging model and the environmental parameters estimation method

    East-West Partnerships for Poverty Reduction: Experience Review and Institutional Innovation

    Get PDF
    As a general rule, companies have focused most of their improvement initiatives in manufacturing and operations, leaving their internal service processes behind. This study presents a FRACAS process which is underperforming in terms of lead time. The process is studied in detail and the people who work with it were interviewed to find out how they think the process inhibits their work. The contribution this study makes is that it provides an example of what lean FRACAS could mean. The studied process presents itself as non-compliant with what the employees wish from such a process. This in turn causes these employees to underperform since they think that the process does not seem to provide value to neither themselves nor the customers

    Graph Attention Based Spatial Temporal Network for EEG Signal Representation

    Get PDF
    Graph attention networks (GATs) based architectures have proved to be powerful at implicitly learning relationships between adjacent nodes in a graph. For electroencephalogram (EEG) signals, however, it is also essential to highlight electrode locations or underlying brain regions which are active when a particular event related potential (ERP) is evoked. Moreover, it is often im-portant to identify corresponding EEG signal time segments within which the ERP is activated. We introduce a GAT Inspired Spatial Temporal (GIST) net-work that uses multilayer GAT as its base for three attention blocks: edge atten-tions, followed by node attention and temporal attention layers, which focus on relevant brain regions and time windows for better EEG signal classification performance, and interpretability. We assess the capability of the architecture by using publicly available Transcranial Electrical Stimulation (TES), neonatal pain (NP) and DREAMER EEG datasets. With these datasets, the model achieves competitive performance. Most importantly, the paper presents atten-tion visualisation and suggests ways of interpreting them for EEG signal under-standing

    Optimization Techniques Applied to Neural Networks

    Get PDF
    Electrical Engineerin

    Ultrafast Relaxation Dynamics of Photoexcited Dirac Fermion in The Three Dimensional Dirac Semimetal Cadmium Arsenide

    Full text link
    Three dimensional (3D) Dirac semimetals which can be seen as 3D analogues of graphene have attracted enormous interests in research recently. In order to apply these ultrahigh-mobility materials in future electronic/optoelectronic devices, it is crucial to understand the relaxation dynamics of photoexcited carriers and their coupling with lattice. In this work, we report ultrafast transient reflection measurements of the photoexcited carrier dynamics in cadmium arsenide (Cd3As2), which is one of the most stable Dirac semimetals that have been confirmed experimentally. By using low energy probe photon of 0.3 eV, we probed the dynamics of the photoexcited carriers that are Dirac-Fermi-like approaching the Dirac point. We systematically studied the transient reflection on bulk and nanoplate samples that have different doping intensities by tuning the probe wavelength, pump power and lattice temperature, and find that the dynamical evolution of carrier distributions can be retrieved qualitatively by using a two-temperature model. This result is very similar to that of graphene, but the carrier cooling through the optical phonon couplings is slower and lasts over larger electron temperature range because the optical phonon energies in Cd3As2 are much lower than those in graphene

    Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion

    Get PDF
    AbstractEGF receptor (EGFR) overexpression correlates with metastasis in a variety of carcinomas, but the underlying mechanisms are poorly understood. We demonstrated that EGF disrupted cell-cell adhesion and caused epithelial-to-mesenchymal transition (EMT) in human tumor cells overexpressing EGFR, and also induced caveolin-dependent endocytosis of E-cadherin, a cell-cell adhesion protein. Chronic EGF treatment resulted in transcriptional downregulation of caveolin-1 and induction of the transcriptional repressor Snail, correlating with downregulation of E-cadherin expression. Caveolin-1 downregulation enhanced β-catenin-TCF/LEF-1 transcriptional activity in a GSK-3β-independent manner. Antisense RNA-mediated reduction of caveolin-1 expression in EGFR-overexpressing tumor cells recapitulated these EGF-induced effects and enhanced invasion into collagen gels. We propose that EGF-induced negative regulation of caveolin-1 plays a central role in the complex cellular changes leading to metastasis
    corecore