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Abstract. Graph attention networks (GATs) based architectures have proved to 

be powerful at implicitly learning relationships between adjacent nodes in a 

graph. For electroencephalogram (EEG) signals, however, it is also essential to 

highlight electrode locations or underlying brain regions which are active when 

a particular event related potential (ERP) is evoked. Moreover, it is often im-

portant to identify corresponding EEG signal time segments within which the 

ERP is activated. We introduce a GAT Inspired Spatial Temporal (GIST) net-

work that uses multilayer GAT as its base for three attention blocks: edge atten-

tions, followed by node attention and temporal attention layers, which focus on 

relevant brain regions and time windows for better EEG signal classification per-

formance, and interpretability. We assess the capability of the architecture by 

using publicly available Transcranial Electrical Stimulation (TES), neonatal pain 

(NP) and DREAMER EEG datasets. With these datasets, the model achieves 

competitive performance. Most importantly, the paper presents attention visuali-

sation and suggests ways of interpreting them for EEG signal understanding. 

Keywords: EEG models, Electroencephalography, Graph neural networks, At-

tention mechanism, Interpretable machine learning 

1 Introduction 

The success of deep neural networks (DNN) at learning from data in areas such as im-

age classification, natural language processing, audio classification and speech genera-

tion etc., has been attributed to the applicability of convolution operations to a common 

system of coordinates in the Euclidean space [1]. However, representing electroenceph-

alogram (EEG) signals within the same n-dimensional linear space fails to capture vital 

information including strengths and directionality of relationships between electrode 

locations within and between underlying brain regions.   

Geometric deep learning (GDL) was conceptualized to replicate the achievement of 

erstwhile vanilla deep learning in the non-Euclidean space, often dealing with graph 

structured data [2].  A graphical representation of EEG data encapsulates interlinks and 

structural organization between EEG electrodes (channels).  



This paper introduces a GAT Inspired Spatial Temporal (GIST) network, which 

draws inspiration from the success of Graph Attention (GAT) network at expressing 

the strength of the connections between nodes through self-attention. The architecture 

also has a node attention layer to learn the importance of individual nodes (electrodes), 

followed by a temporal attention layer which focusses on informative time windows. 

This completes the EEG feature representation learning part of the architecture.  For 

EEG signal classification, a multilayer perceptron is added to the top of the model.  In 

this paper, we make the following contributions: 1) propose a novel nearly transparent 

graphical model for high level EEG signal feature learning; 2) assess the feature learn-

ing ability of the model by using 3 different EEG datasets; 3) suggest ways through 

which the learned attention weights can be leveraged for model diagnosis and interpre-

tation; and 4) demonstrate the practical use of the model on real world problems (a) 

identifying regions associated with physical pain; and (b) channel selection for emotion 

classification. 

2 Related Work 

2.1 Graph Neural Networks 

In a graph structure, the nodes, or vertices, are linked together by edges. Nodes and 

edges often have multi-dimensional features. While static forms of graphs provide in-

formative spatial representations, better insight emanates from the time-varying struc-

tural changes of such graphs e.g., adding/removing a node and creating/modifying an 

edge or their features or weights.  

Graph neural networks (GNN) were devised to bring convolutional neural network 

(CNN) like operations to the domain of geometric deep learning and thrive on the prin-

ciple of message passing. In the message passing operation, node features of all of the 

target node’s neighbours are aggregated to create new features for the said node. For 

the current node to learn from features of a node two hops away (neighbour of a neigh-

bour), two iterations would be needed. Stacking these message passing layers enables 

the current node to learn even from the entire graph. It follows therefore, that the re-

sulting embedding in a GNN encodes both the node features and existing node to node 

relations. Common GNN architectures include Graph Convolution Networks (GCN) 

[3] and Graph ATtention networks (GAT) [4].  

2.2 Graph Attention Networks 

Unlike GCN, where all neighbours of a node are given equal importance, in GAT, the 

features of the target node’s neighbours are given learned weights before aggregation. 

Weighting is done through an attention mechanism.  

To illustrate this point, assume that the input to a GAT layer is a collection of node 

features h=h1

→

, h2

→
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→
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∈ RF  where N denotes the total number of nodes in a 

graph, F the number of features available in each node. Equations (1)-(4) summarise 

how node embeddings h(l+1) are obtained given features hl at a lower layer l. 
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 As shown in (1), a learnable weight, 𝑊(𝑙) is used to convert input features from a 

low level to a higher level to improve their expressivity. The outputs of (1) from two 

adjacent nodes, i and j are concatenated (𝑧𝑖
(𝑙)

 ‖𝑧𝑗
(𝑙)

), and an additive attention score 𝑒𝑖𝑗
(𝑙)

 

is obtained by taking the dot product of the result and a learnable weight, 𝑎
→

(𝑙) before 

applying LeakyRelu activation function. In (3), SoftMax is used to normalize the scores 

attained in (2) across all single hop neighbours of i,  𝒩(𝑖). Finally, normalized attention 

scores 𝛼𝑖𝑗
(𝑙)

are used to provide weights to adjacent node embeddings (𝑧𝑗
(𝑙)

) which are 

further aggregated as shown in (4), to get new embeddings for the target node where 𝜎 

is an activation function such as Rectified Linear Unit (ReLU). 

The attention score as calculated in GAT indicates the importance of a node to its 

neighbour, thus it can also be regarded as learned edge weight between concerned 

nodes. We refer to this as a form of edge attention.  In case of multiple attention heads, 

node embeddings can be obtained by combining the outputs of the heads by concate-

nation or averaging, as shown in (5), with H as the number of heads. 
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2.3 EEG Graph Models 

Zhang et al. [5] proposed a Graph based Hierarchical Attention Model (G-HAM) which 

encodes channel connectivity as either Euclidean distance between electrodes’ spatial 

positions or structural neighbourhood. The node features are the raw signals. These 

node signals are sliced before conventional CNN is applied to them for feature extrac-

tion. This layer is followed by attention mechanisms which isolate important time slices 

and nodes. However, with the edge weights remaining constant across temporal slices 

and trials during graph formation, the model does not capture the dynamic nature of 

relations between brain regions, and there is no guarantee for a link between spatial and 

functional relationships.  

Dynamical GCNs were proposed in [6] for EEG emotion classification, which adap-

tively adjust edge weights during model training. A similar approach is taken in  [7] 

where a spatial temporal GCN is used to learn important edges and eventually estimate 

a latent graph structure. In [8], layers of GCN are used to extract features from temporal 

portions of EEG signals. Thereafter, long short-term memory (LSTM) is used to learn 

temporal changes across time slices.  

As opposed to GAT process described in equations (1) to (4), GCN’s convolution 

operation results in (6) below, where 𝑐𝑖𝑗  =  √|𝒩(𝑖)||𝒩(𝑗)|. Clearly, cij is a function 

of the structural configuration of the graph. Thus, owing to their dependence on graph 

structure, GCN based methods suffer from limited generalisability.  
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On the other hand, GAT replaces cij with attention mechanism. This ensures that 

different edge weights are implicitly learned, which if applied to an EEG graph model 

would offer a good approximation of the functional brain connectome. Besides, the 

learned edge weights can be visualized for model interpretation. While interactivity 

between nodes is necessary, it is not sufficient for EEG signal understanding. In EEG 

signal localisation and lateralisation, for example, it is essential to isolate relevant nodes 

associated with a particular brain activation. Identifying a time window within which 

an event related potential (ERP) occurs is also relevant e.g., when measuring signal 

propagation speed or the time it takes for a brain to react to a painful stimulus. 

We propose a GAT Inspired Spatial Temporal model which learns relationship be-

tween brain areas (edge attention), detects significant channels (node attention) and 

identifies relevant temporal segments (temporal attention) responsible for the ERP un-

der study. This architecture allows for interpretability and explainability of brain activ-

ities following an ERP. Moreover, node attention can also be used for channel selection 

for production affordable portable devices for specific applications, e.g., seizure detec-

tion, neural marketing, emotion recognition etc. 

3 GIST Network Architecture 

The GIST network architecture, shown in Figure 1, takes its input as windowed signals 

and outputs predicted labels. Before the classifier, there are three attention blocks 

namely: edge attention, node attention and temporal attention. This section discusses 

these building blocks.  

3.1 Input Segmentation 

The input EEG signals are segmented into a fixed number of time windows, Q. Slicing 

signals enables learning from the temporal dynamics of the recorded signal and appor-

tioning importance values to each slice which facilitates identification of a window 

within which relevant ERPs occurred. One graph is created from each time segment. 

Thus, there are Q graphs per recording. 

 
Fig. 1. GIST Network Architecture 
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3.2 Graph Representation 

To formulate a graph, each electrode position (channel) in a temporal slice becomes a 

node. A set of F features is generated from the raw signal at each of the N nodes. Con-

nectivity between nodes is encoded using a so-called adjacency matrix, A, such that a 

1 indicates that an edge exists between nodes i and j. Otherwise, a 0 is inserted. 

Adjacency Matrix. For the human brain, it is believed that measures of temporal 

and/or spectral oscillatory synchrony of recorded EEG signals define the functional 

connectivity between its regions. Common measures include coherence, transfer en-

tropy, phase locking value, phase-slope index, and Granger causality [9]. Of these 

methods, coherence is the most popular because it is easy to interpret [10]. It reveals 

the magnitude of oscillatory frequency coupling between signals. To produce an adja-

cency matrix from coherence scores between signals in a time window, a threshold (k) 

value was used to determine if an edge existed between nodes of concerned signals.  

Features. Node features extracted from raw EEG signals ranged from conventional 

statistical features (mean, kurtosis etc.) to nonlinear and nonstationary measures of en-

tropy and fractal dimension. Details of these are available in [11]. 

3.3 Edge Attention 

For edge attention, multi-layer GAT network was used to learn the interdependence 

between nodes. As it has been highlighted in section 2.3, in a GAT network, attention 

is defined as the importance of adjacent nodes to a central node - in a way, quantifying 

the strength of the edges between nodes.  

It must be noted that at any given point, there are multiple electrical activities taking 

place in the human brain. Thus, the adjacency matrix cannot distinguish between brain 

connectivity related to an ERP and that due to other background activities. The role of 

this layer is, therefore, to tune edge weights in response to a target ERP. As the model 

learns to classify whether a desired event took place or not, edge attention weights are 

automatically adjusted accordingly. Given that in the architecture, we have chopped our 

signal into Q time windows, the multi-head node update function in (5) can be modified 

to factor in this temporal slice (t) element as shown in (7), 

 ℎ𝑖
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where ℎ𝑖
{𝑡,(𝑙+1)}

is the output of ith node for tth time window, whose value depends on 

𝑧𝑗
(𝑡,𝑙)

, the output of its connected node (with index j) at layer l and tth time window, as 

well as the corresponding edge attentions 𝛼𝑖𝑗𝑘
(𝑡,𝑙)

 for kth attention head. 𝜎 is an activation 

function usually a LeakyReLU.   



3.4 Node attention 

The output of edge attention layer at temporal window, t is an updated set of node em-

beddings  ℎ{𝑡,(𝑙+1)} ∈  𝑅𝑁 × 𝐹′
, where the number of features, 𝐹′ do not necessarily have 

to be the same as the original feature size,  𝐹. This becomes an input to the node atten-

tion layer within the same time slice, t. The purpose of node attention is to identify 

nodes whose electrical activities can be associated with the presence of a particular 

external stimulation. The node embedding vector is transposed to get an  𝐹′ ×  𝑁  ma-

trix, which is multiplied with a learned attention weight, 𝑎𝑛𝑜𝑑𝑒𝑖

(𝑡)
 as depicted in (8). After 

applying an activation function, the importance value, 𝑑𝑖
(𝑡)

 for node i in window t, is 

determined by taking the mean across the 𝐹′ dimension. Again, to make these attention 

values comparable, we apply a softmax function (9) to normalize the values. The nor-

malised attention is then used as weights for the node embeddings to produce the node 

attention block output ℎ𝑖
′(𝑡)

  (10). For N nodes, the output is then ℎ′(𝑡)
∈  𝑅𝑁 × 𝐹′

.  
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3.5 Temporal attention 

The temporal attention block attempts to focus on certain time windows depending on 

their relevance to the end classification task. It also follows the pattern of additive at-

tention as described above. Equations (11) – (15) specify how the final features of the 

GIST network are obtained. In this case, 𝑎𝑡𝑒𝑚𝑝
(𝑡)

  is a learnable weight while 𝑏(𝑡)  and 

𝛼𝑡𝑒𝑚𝑝
(𝑡)

 represent temporal slice importance and normalised attention score respectively. 

 

    𝑏(𝑡) = LeakyReLU(𝑎𝑡𝑒𝑚𝑝
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 𝒐𝒖𝒕 =  ‖𝑡=1
𝑄  𝑜(𝑡) (14) 
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For Q time windows, the operator  ‖𝑡=1
𝑄  𝑜(𝑡) is used to chain together Q slice outputs 

to feed into the classification block. Here, ‖𝑡=1
𝑄 𝑜(𝑡) = (𝑜(1) ‖  𝑜(2) ‖ . . .  ‖ o

(𝑄)
). 

3.6 Classifier 

The classification block comprises of a multilayer perceptron (MLP), or a fully con-

nected feed forward neural network. This takes a flattened output of (14) to produce 



 

class predictions. In our experiments we empirically opted for an MLP comprising of 3 

dense layers interleaved with dropout layers for regularisation and ReLU for activation. 

4 Experiments 

The main objective behind the GIST network is to model EEG signals in a way that 

facilitates understanding and interpretability. To this end three datasets were used: 

Transcranial Electrical Stimulation (TES) [12],  Neonatal Pain (NP) and a Database for 

Emotion Recognition through EEG and ECG Signals (DREAMER) [13].  

The TES dataset has known node positions which were stimulated and hence used 

to demonstrate the roles of edge and node attention blocks. NP signals were time locked 

to an ERP and hence, this is used to explore the capability of temporal attention in the 

network. We further investigate the usefulness of the model by applying it to two real 

world problems: brain regions associated with physical pain (NP), and emotion classi-

fication (DREAMER). 

Thus, TES data was used to predict which part of the brain (frontal or motor region) 

was stimulated, while in NP the task was to classify if a given EEG record was done 

during painful heel lance or not. Finally, in DREAMER, the goal was to distinguish 

between emotions experienced by subjects while watching video clips on a binary scale 

of positive or negative valence. In TES and NP, model performance was evaluated by 

group stratified K-Fold validation where subjects formed the groups. On the other hand, 

leave one subject out (LOSO) cross validation was used in DREAMER.  A summary 

of these datasets and time windows is shown in Table 1. 

 
Table 1: Summary of datasets used to test GIST network. 

Database No. Subjects Windows No. Channels Sampling Rate Stimuli 

TES  20 (7 F) 5 30 2000 Hz 30Hz 1mA current 

NP 112 (52 F) 4 20 2000 Hz Heel lance 

DREAMER 23 (9 F) 12 14 128 Hz Video clips 

4.1 Experimental Settings 

DGLGraph [14] package with PyTorch backend was used to create the models. The 

hyperparameter settings for our experiments were: GAT output feature size, 8; GAT 

hidden layer feature size, 8; number of GAT layers, 3; number of attention heads per 

layer, 3; attention drop rate, 0.1; LeakyReLU negative slope, 0.1; and 0.4 as the drop 

rate for the first two MLP layers. The learning rate was 0.001 using Adam optimiser 

with cross entropy as the loss function. A threshold, k = 0.6, was used to produce an 

adjacency matrix from coherence scores. These were chosen following a series of prior 

Bayesian optimisation experiments on subsets of the datasets. Bayesian optimisation is 

a relatively quick probabilistic method of progressively narrowing down hyperparam-

eter choices based on previous evaluations. 

It was observed that the most influential parameters were GAT output feature size 

(GOFS), GAT hidden layer feature size (GHLFS) and threshold (k). For GHLFS with 



possible values as 2,4 and 8, an increase in the value produced a corresponding im-

provement in the accuracy. On the other hand, with GOFS, lower values were better. 

An exploration of the threshold value revealed that accuracy was low when k was either 

too low (highly dense matrix) or too high (highly sparse matrix).  

5 Results and Discussion 

5.1 Feature Learning 

A dimensionality reduction strategy called Uniform Manifold Approximation and Pro-

jection (UMAP) [15] was used to visualise how well feature learning took place across 

the GIST model.  

Figure 2 shows a projection of the low-level input features and outputs of the three 

attention blocks onto two dimensional spaces. The plots demonstrate that there is in-

creasing separability between classes moving across the edge attention, node attention 

and temporal attention blocks. Thus, a trained GIST model is good at feature transfor-

mation for classification purposes. It is also worth noting that for a simpler problem 

such as TES, it is possible to separate the classes at the node attention level which ena-

bles node attention to easily identify the active electrode positions. 

5.2 The Role of Attention Blocks 

From the temporal point of view, the datasets used are of three different characteristics: 

EEG recordings in which the time at which an ERP is induced is unknown e.g., 

 
Fig.  2. UMAP visualisation of feature learning across the GIST network input, edge at-

tention, node attention and temporal attention layers for (a) TES and (b) NP. 



 

DREAMER where relevant parts of the clips at which emotions were evoked are not 

identified; synchronized data where the stimulation time point is fixed such as NP in 

which heel lance was done 2 seconds after the start of the recording; and a dataset like 

TES where a stimulus was applied in the entire duration of the recording.  

 From figure 3(a) we observe that highest temporal attention scores are in time win-

dows 3. This is in line with what was expected since window 3 comes immediately after 

a heel lance and hence it being the most informative in as far as classification between 

lance and no lance is concerned. By extension, this also demonstrates that the brain’s 

response to a noxious stimulus is within 1 second. Figure 3(b) displays strip plots of 

TES temporal attention by label. It can be observed that both windows 1 and 3 can 

distinguish between frontal and motor stimulation. This is also supported by a temporal 

output visualisation of the 5 windows in figure 4 where windows 1 and 3 show data 

points in nearly perfect clusters.  

 
Fig. 3. (a) Temporal attention distribution box plots in TES and (b) Strip plots showing 

temporal attention by label in TES. 

 
Fig. 4. UMAP visualisation of TES of the temporal attention block output of each individual 

window 

 



Moreover, if we consider the edge attention at these two windows as depicted in 

figures 5(a) and (b), it is evident that the two windows attend to different brain regions. 

Window 1 focusses on the sensorimotor region while window 2 concentrates on the 

frontal area. Thus, for this data type, where the entire duration of EEG recording com-

prised of ERP, the time segments act in a manner similar to multi-head attention layers. 

The node attention distribution information conveyed through topographic plots in 

5(c) and (d) can be interpreted as either highlighting relevant electrode positions for 

classification or associating concerned brain areas with certain functions e.g.  pain, 5(c) 

and emotion processing, 5(d). From 5(c) the highest intensity is around the premotor 

and sensorimotor region, followed by the parietal region. This observation is supported 

by Tayeb et al. who established that ‘noxious stimulation activates the pre-motor (Cz 

electrode) and moderately intense stimulation was found in the parietal lobe (P2, P4, 

and P6 electrodes)’[16]. 5(d) suggests that the frontal, temporal, and parietal regions 

are active during emotion processing. This is a view also shared by [17–19] among 

others. It follows therefore, that node attention in figures 5(d) can potentially be used 

to select channels for emotion recognition. However, applying this model for channel 

selection purposes must be done with extreme caution. This is because information 

contained in a node at the node attention layer is an aggregation of feature data from 

neighbouring nodes. The number of message passing rounds (how far wide the node 

goes to fetch for information) is controlled by the number of GAT layers. 

5.3 Classification Performance 

The model’s performance was assessed using accuracy, sensitivity, and specificity. Ac-

curacy refers to the ratio of the number of correct predictions to the total number of 

predictions. Sensitivity, also called recall, hit rate, or true positive rate is calculated as 

the number of instances which were predicted to be positive which are truly positive 

divided by the number of all positive instances available in the dataset. The equivalent 

of sensitivity for the negative class is specificity (selectivity or true negative rate). Thus, 

 
Fig. 5. Connectivity plots for (a) TES window 1 edge attention and (b) TES window 3 edge 

attention, and topographic plots for (c) NP node attention (d) DREAMER node attention 

 



 

it is the ratio of the number of true negatives to the sum of the true negatives and false 

positives.   

Classification scores for TES, NP and DREAMER are provided in table 2 below. 

The performance of the model on TES was very good, with scores of 99.4%, 100% and 

98.8% for accuracy, specificity, and sensitivity respectively. On the other hand, speci-

ficity for NP was 67% even though accuracy and sensitivity were relatively higher at 

76% and 96% in that order.  

It is only DREAMER which has been found to have been used in other studies, albeit 

with different cross validation strategies. Table 3 compares performance of GIST net-

work with other models. The within subject (WS) protocol utilised subject dependent 

leave one session out cross validation strategy in which a subject’s recordings are split 

such that one session is used for testing while the rest are used for training. Thus, an 

accuracy score of 79.18% obtained using GIST network compares fairly with other 

models even though LOSO, a more challenging cross validation strategy was used. 

 
Table 2: Model classification performance Table 3: Performance on DREAMER  

Database Accuracy Specificity Sensitivity 

NP 76% 67% 96% 

TES 99.4% 100% 98.8% 

DREAMER 79.18% 75.4% 80.2% 
 

Model Validation Accuracy 

daSPDnet [20]  LOSO 67.99% 

CNN [21] LOSO 75.93% 

DGCNN [6] WS 86.23% 

GCB-Net [22] WS 86.99% 

GIST Network LOSO 79.18% 
 

6 Conclusion and Future Work 

In this paper, a GIST network has been presented. The graph model thrives on the prin-

ciple of attention to create a rich feature representation for classification purposes. The 

additive multi-level attention mechanisms used in the network facilitates understanding 

of EEG signals. From the attention scores, it is possible to visualise interdependence 

between brain regions, importance of individual electrode positions and the signifi-

cance of temporal slices.  

 Future work could include adding an automatic feature extraction block to the GIST 

model. Modification of the architecture to accept heterogeneous graphs could also make 

the model accommodate multimodal data. To improve the model’s channels selection 

capability, a dedicated channel attention layer could be added to the architecture just 

before the edge attention layer. 
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