177 research outputs found

    Higher-order Topology of Axion Insulator EuIn2_2As2_2

    Full text link
    Based on first-principles calculations and symmetry analysis, we propose that EuIn2_2As2_2 is a long awaited axion insulator with antiferromagnetic (AFM) long range order. Characterized by the parity-based invariant Z4=2\mathbb Z_4=2, the topological magneto-electric effect is quantized with θ=π\theta=\pi in the bulk, with a band gap as large as 0.1 eV. When the staggered magnetic moment of the AFM phase is along a/ba/b axis, it's also a TCI phase. Gapless surface states emerge on (100), (010) and (001) surfaces, protected by mirror symmetries (nonzero mirror Chern numbers). When the magnetic moment is along cc axis, the (100) and (001) surfaces are gapped. As a consequence of a high-order topological insulator with Z4=2\mathbb Z_4=2, the one-dimensional (1D) chiral state can exist on the hinge between those gapped surfaces. We have calculated both the topological surface states and hinge state in different phases of the system, respectively, which can be detected by ARPES or STM experiments

    The Reduced Order Method for Solving the Linear Complementarity Problem with an M-Matrix

    Get PDF
    In this paper, by seeking the zero and the positive entry positions of the solution, we provide a direct method, called the reduced order method, for solving the linear complementarity problem with an M-matrix. By this method, the linear complementarity problem is transformed into a low order linear complementarity problem with some low order linear equations and the solution is constructed by the solution of the low order linear complementarity problem and the solutions of these low order linear equations in the transformations. In order to show the accuracy and the effectiveness of the method, the corresponding numerical experiments are performed

    Strong and fragile topological Dirac semimetals with higher-order Fermi arcs

    Get PDF
    Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an s–d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd3As2, KMgBi, and rutile-structure (β′-) PtO2

    MoTe2: A Type-II Weyl Topological Metal

    Full text link
    Based on the ab initio calculations, we show that MoTe2, in its low-temperature orthorhombic structure characterized by an X-ray diffraction study at 100 K, realizes 4 type-II Weyl points between the N-th and N+1-th bands, where N is the total number of valence electrons per unit cell. Other WPs and nodal lines between different other bands also appear close to the Fermi level due to a complex topological band structure. We predict a series of strain-driven topological phase transitions in this compound, opening a wide range of possible experimental realizations of different topological semimetal phases. Crucially, with no strain, the number of observable surface Fermi arcs in this material is 2 - the smallest number of arcs consistent with time-reversal symmetry.Comment: Published versio

    Tandem-pumped, tunable thulium-doped fiber laser in 21 μm wavelength region

    Get PDF
    We present a continuously tunable thulium(Tm)-doped fiber laser operating in the important 2.1 μm region, which is tandem-pumped by another Tm-doped fiber laser at 1908 nm. The advantages of pumping a Tm-doped fiber laser at the long-wavelength absorption tail (>1900 nm) of the fiber include a reduced quantum-defect, and efficient suppression of the amplified spontaneous noise (and potential parasitic lasing) at the short-wavelength region. This facilitates attainment of stable lasing operation in the long-wave emission tail of the Tm fiber at ~2.1 μm. By rotating a diffraction grating inside the Tm fiber laser cavity, we experimentally achieved a wavelength-tuning range of 2000-2172 nm. At central wavelengths of 2050 nm, 2150 nm, and 2172 nm, the slope efficiencies were 23%, 16%, and 9.9%, respectively. To the best of our knowledge, this is the first demonstration of long-wavelength operation of a Tm fiber laser system tandem-pumped at >1900 nm
    • …
    corecore