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Abstract
In this paper, by seeking the zero and the positive entry positions of the solution, 
we provide a direct method, called the reduced order method, for solving the linear 
complementarity problem with an M-matrix. By this method, the linear complemen-
tarity problem is transformed into a low order linear complementarity problem with 
some low order linear equations and the solution is constructed by the solution of 
the low order linear complementarity problem and the solutions of these low order 
linear equations in the transformations. In order to show the accuracy and the effec-
tiveness of the method, the corresponding numerical experiments are performed.

Keywords Linear complementarity problem · M-matrix · Solution · Direct method

1 Introduction

The linear complementarity problem is to find a real vector x ∈ Rn satisfying
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where A ∈ Rn×n , q ∈ Rn and the superscript ‘T’ denotes the transpose of a vector. 
For our convenience, let us denote this problem as LCP(A, q). Many problems can 
be transformed into the form (1), for instance, the elastic contact problem, the lin-
ear and quadratic programming problems and the market equilibrium problems, see 
[1–6] and the references therein.

It is well-known that the LCP(A, q) has a unique solution for any q ∈ Rn if and 
only if the system matrix A is a P-matrix. The P-matrices include many types, 
for example, the positive definite matrix and the H+-matrix, both of which have 
been investigated in both theory and the numerical algorithms aspects, see [1, 
7–11] and the references therein. In recent decades, a series of solving methods 
for the LCP(A, q) are studied by many authors, such as the Lemke method [3], 
the principal pivot transformation method [12], the non-modulus linear method 
[13], the projected method [8], the chaotic iterative methods [14] and the mod-
ulus-based matrix splitting iteration methods [7], etc.. These solving approaches 
can be divided into two categories: the direct methods and the iteration methods. 
The first three methods mentioned above are the direct methods and the latter 
three methods are the iteration methods. Both the direct methods and the iteration 
methods have their advantages and both methods need some conditions. In gen-
eral, when the LCP(A, q) has a small and dense system matrix, the direct methods 
are considered, and when the LCP(A, q) has a large and sparse system matrix, the 
iteration methods are considered. However, the criterion of applying the direct 
methods or the iteration methods is not unconditional, such as, if the sparse struc-
ture of A can not be applied in the iteration methods but the direct methods are 
simple and effective, it is more better to consider the direct methods even if A is 
a large matrix, since the solutions obtained by the direct methods are the exact 
solutions. For other materials connected with the solving methods, see [14–26] 
and the references therein. Besides the numerical algorithms for the LCP(A, q), 
the theoretical aspects have also been discussed, for instance, the existence and 
uniqueness of solution, the stability and sensitivity of the solution, the relation-
ship between the LCP(A, q) and other problems, the error bound problems and the 
perturbation problems of the solution, see [1, 5, 9, 27–30] and other references.

In this paper, we study the direct method for solving the LCP(A, q) and con-
sider a particular LCP(A, q) with the system matrix A being an M-matrix. Based 
on the complementarity relation existed in the LCP(A,  q) and the properties of 
the M-matrix, by seeking the zero and the positive entry positions of the solution, 
we transform the LCP(A, q) into an equivalent low order linear complementarity 
problem with a low order linear equations. Since the low order linear comple-
mentarity problem is established, then this transformation procession can be con-
tinued. In this way, we provide a reduced order method for solving the LCP(A, q) 
with an M-matrix. This method integrates the reducing order procession and the 
construction of the solution of the linear complementarity problem in together, 
and the numerical results show that the reduced order method is an effective 
method.

(1)xTw = 0, x ≥ 0, w = Ax + q ≥ 0,
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The outline of this paper is as follows. We present the main results and the 
reduced order method in Sect. 2 and the pseudo codes of this method are given in 
Sect. 3.

2  Main Results

In this section, we consider the direct method for solving the LCP(A,  q) with an 
M-matrix. Let us first give some definitions, notations and preliminary works. Most 
of them can be found in [5, 7, 10]. The real matrix A = (aij) is denoted by A ≥ 0 
if aij ≥ 0, i, j = 1, 2, ..., n . A matrix A ∈ Rn×n is called an M-matrix if it satisfies 
A−1 ≥ 0 with aij ≤ 0(i ≠ j), i, j = 1, 2, ..., n. For an M-matrix, all of its principal sub-
matrices are also M-matrices. The vector v is denoted by v ≥ 0 (> 0) if vi ≥ 0 (> 0) 
holds for i = 1, 2, ..., n.

Lemma 1       Let A ∈ Rn×n be an M-matrix, and suppose x∗ is the solution of the 
LCP(A, q), then 

 (i) if q ≤ 0 , x∗ = A−1(−q);
 (ii) if q ≥ 0 , x∗ = 0.

Proof Since the matrix A is an M-matrix, so A−1 ≥ 0 and the LCP(A, q) has a unique 
solution.

If q ≤ 0 , then A−1(−q) ≥ 0 and A(A−1(−q)) + q = (−q) + q = 0 , that is 
(A−1(−q))T[A(A−1(−q)) + q] = 0 , so x∗ = A−1(−q).

If q ≥ 0 , then 0T(A0 + q) = 0 , so x∗ = 0.
Therefore, the conclusion is proved.  ◻

Lemma 1 considers two particular cases of the LCP(A, q), in the following, we 
discuss the general case.

Theorem 1      Let A ∈ Rn×n be an M-matrix, and suppose x∗ is the solution of the 
LCP(A, q). Let q = (q1, q2, ..., qn)

T ∈ Rn . Denote SN = {i ∶ qi < 0} = {i1, i2,… , is} ≠ Φ, 
SP = {j ∶ qj ≥ 0} = {j1, j2, ..., jt} , �1 = (qi1 , qi2 , ..., qis)

T , �2 = (qj1 , qj2 , ..., qjt )
T , 

x̂∗
1
= (x∗

i1
, x∗

i2
, ..., x∗

is
)T , x̂∗

2
= (x∗

j1
, x∗

j2
, ..., x∗

jt
)T . Denote A(SN ,SN )

 as the principal sub-
matrix of A, and denote A(SP,SN )

 as the sub-matrix of A with the row and column indi-
ces coming from the sets SP , SN , respectively, and v = A−1

(SN ,SN )
(−�1) . If 

�2 + A(SP,SN )
v ≥ 0 , then x̂∗

1
= v, x̂∗

2
= 0.

Proof From the definition of SN and SP , we know s + t = n . Since A is an M-matrix, 
A(SN ,SN )

 is an M-matrix too, therefore the vector v = A−1
(SN ,SN )

(−�1) is a positive vector. 
If we denote the indices of the vector v by i1, i2, ..., is corresponding to the elements 
of set SN , and set x∗ = (x∗

1
, x∗

1
, ..., x∗

n
)T , where x∗

i
= 0 if i ∈ SP and x∗

i
= x∗

ik
= vik if 
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i ∈ SN , and set w∗ = (w∗
1
,w∗

2
, ...,w∗

n
)T , where w∗

i
= 0 if i ∈ SN and 

w∗
i
= qi + A(i,SN )

v ≥ 0 if i ∈ SP , then we have x∗ ≥ 0,w∗ ≥ 0 with

Thus, x∗ is the solution of the LCP(A,  q). From the constructions of x∗,w∗ , and 
the unique property of the solution for the LCP(A, q) with an M-matrix, we know 
x̂∗
1
= v, x̂∗

2
= 0 , which constitute the whole solution x∗ of the LCP(A, q). So the con-

clusion is established.   ◻

From Theorem 1 and the proof, we can find that the solution of the LCP(A, q) is 
composed of two parts in some conditions: one is the zero entries part, and the other 
one is the positive entries part which can be obtained by solving a low order linear 
equations. If the conditions are not satisfied, we have the following result about the 
solution.

Theorem 2      Let A ∈ Rn×n be an M-matrix, and suppose x∗ is the solution of the 
LCP(A, q). Let q = (q1, q2, ..., qn)

T ∈ Rn and w∗ = Ax∗ + q = (w∗
1
,w∗

2
, ...,w∗

n
)T ∈ Rn . 

Denote SN = {i ∶ qi < 0} = {i1, i2, ..., is} ≠ Φ , SP = {j ∶ qj ≥ 0} = {j1, j2, ..., jt} , 
�1 = (qi1 , qi2 , ..., qis )

T , �2 = (qj1 , qj2 , ..., qjt )
T , x̂∗

1
= (x∗

i1
, x∗

i2
, ..., x∗

is
)T , x̂∗

2
= (x∗

j1
, x∗

j2
, ..., x∗

jt
)T , 

ŵ∗
1
= (w∗

i1
,w∗

i2
, ...,w∗

is
)T and ŵ∗

2
= (w∗

j1
,w∗

j2
, ...,w∗

jt
)T . Denote A(SN ,SN )

 , A(SP,SP)
 , A(SP,SN )

 , 
A(SN ,Sp)

 as the sub-matrices of A with the row and column indices coming from the 
sets SP , SN , respectively, and v = A−1

(SN ,SN )
(−�1) . If �2 + A(SP,SN )

v has negative entries, 
then the LCP(A, q) can be transformed into a low order equivalent linear comple-
mentarity problem LCP(A1, q1 ) with a linear system N1x = b1 , where A1 = A(S

P
,S

P
)

−A(S
P
,S

N
)A

−1
(S

N
,S

N
)
A(S

N
,S

P
) , q1 = �2 + A(SP,SN )

v , N1 = A(SN ,SN )
 , b1 = −�1 − A(SN ,SP)

x̂∗
2
 and 

x̂∗
2
 is the solution of the LCP(A1, q1).

Proof For

and the matrix A beng an M-matrix, qi < 0 for i ∈ SN , and ŵ1 ≥ 0 , we know that for 
each i ∈ SN , x∗

i
≠ 0 holds. Thus ŵ1 = 0 , that is ŵ∗

1
= 0 , then the part x̂∗

1
 of the solu-

tion x∗ should satisfy

Solving this linear system equations for x̂∗
1
 , we obtain

Then by substitution, the other part x̂∗
2
 of the solution x∗ satisfies the equation

(
I − A

)(w∗

x∗

)
= q, x∗

T
w∗ = 0.

A(SN ,SN )
x̂1 + A(SN ,SP)

x̂2 + �1 = ŵ1,

(2)A(SN ,SN )
x̂∗
1
= −�1 − A(SN ,SP)

x̂2.

(3)x̂∗
1
= −A−1

(SN ,SN )
[�1 + A(SN ,SP)

x̂2].

ŵ2 − [A(SP,SP)
− A(SP,SN )

A−1
(SN ,SN )

A(SN ,SP)
]x̂2 = �2 − A(SP,SN )

A−1
(SN ,SN )

�1.
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That is, the other part x̂∗
2
 of the solution x∗ satisfies the LCP(A1, q1)

where the matrix

is an M-matrix, which is the Schur complement of the principal sub-matrix 
A(SN , SN) , and

which has the negative entries from the assumption of the theorem. Set the linear 
system (2) about x̂∗

1
 to be N1x = b1 , if we solve (4) for x̂∗

2
 , then from (2), (3) and (4), 

the conclusion of this theorem is proved.   ◻

About Theorem 2, we can see that the linear complementarity problem (4) for 
x̂∗
2
 should be solved first, then x̂∗

1
 can be obtained from the linear system (2), and 

the solution x∗ can be constructed by x̂∗
1
 and x̂∗

2
 at last. Moreover, we can find that 

since the low order linear complementarity problem LCP(A1, q1 ) is established, 
the transformation process of the linear complementarity problem can be contin-
ued until the negative index set SN = Φ or the nonnegative set SP = Φ for a low 
order linear complementarity problem. In these series of transformations, the con-
dition SN ≠ Φ should be measured in advance each time. Since the linear comple-
mentarity problem is changed and these accompanied systems of linear equations 
remain the same in each transformation, we only need to solve the last low order 
linear complementarity problem, followed by solving the forward linear system 
step by step, then the solution of the original LCP(A, q) can be constructed in the 
end. Summarize the above discussions, we obtain the following Theorem 3 fol-
lowed by the reduced order method for the LCP(A, q) from Theorem 2.

Theorem 3      Let A ∈ Rn×n be an M-matrix, and suppose x∗ is the solution of the 
LCP(A, q). Let q = (q1, q2, ..., qn)

T ∈ Rn and w∗ = Ax∗ + q = (w∗
1
,w∗

2
, ...,w∗

n
)T ∈ Rn . 

Denote SN = {i ∶ qi < 0} = {i1, i2, ..., is} ≠ Φ , SP = {j ∶ qj ≥ 0} = {j1, j2, ..., jt} , 
�1 = (qi1 , qi2 , ..., qis )

T , �2 = (qj1 , qj2 , ..., qjt )
T , x̂∗

1
= (x∗

i1
, x∗

i2
, ..., x∗

is
)T , x̂∗

2
= (x∗

j1
, x∗

j2
, ..., x∗

jt
)T , 

ŵ∗
1
= (w∗

i1
,w∗

i2
, ...,w∗

is
)T and ŵ∗

2
= (w∗

j1
,w∗

j2
, ...,w∗

jt
)T . Denote A(SN ,SN )

 , A(SP,SP)
 , A(SP,SN )

 , 
A(SN ,Sp)

 as the sub-matrices of A with the row and column indices coming from the 
sets SP , SN , respectively, and v = A−1

(SN ,SN )
(−�1) . If q1 = �2 + A(SP,SN )

v has negative 
entries, then the LCP(A, q) can be transformed into a low order equivalent linear 
complementarity problem LCP(Al, ql ) with a series of linear equations:

where l (> 1) is an integer. For r = 1 , N1,A1, b1, q1 are same with those in Theorem 
2. For r = 2, 3, ..., l , we have Nr = Ar−1

(Sr−1
N

,Sr−1
N

)
 , br = −�r−1

1
− Ar−1

(Sr−1
N

,Sr−1
P

)
x̂
(r−1)∗

2
 with

(4)x̂2
Tŵ2 = 0, ŵ2 = A1x̂2 + q1.

A1 = A(SP,SP)
− A(SP,SN )

A−1
(SN ,SN )

A(SN ,SP)

q1 = �2 − A(SP,SN )
A−1
(SN ,SN )

�1 = �2 + A(SP,SN )
v,

Nrx = br, r = 1, 2, ..., l,

LCP(Al, ql).
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x(r−1)∗ is the solution of the LCP(Ar−1, qr−1 ) with

which is composed of x̂(r−1)∗
1

 and x̂(r−1)∗
2

 with x̂(r−1)∗
1

 satisfying Nr−1x = br−1 and 
x̂
(r−1)∗

2
 being the solution of the LCP(Ar−2, qr−2 ) for r = 3, 4, ..., l , and x̂(l)∗

2
= 0 or 

x̂
(l)∗

2
= Al−1(−ql).

According to Theorem 3, we obtain the reduced order method for solving the 
LCP(A, q) with an M-matrix, which is a direct method and the solution x∗ is obtained 
by means of construction from the solutions of some low order linear system equations 
and a low order linear complementarity problem. The linear complementarity problem 
is established in each transformation and the index sets that are connected with the sign 
of the constant vector in the linear complementarity problem need to be noted, which 
are applied to construct the solution x∗ at last. In addition, only when we determine 
the integer l, that is, the set Sl

N
 which satisfies Sl

N
= Φ or Sl

P
= Φ , then the process of 

solving the LCP(A, q) begins. At this time, we obtain the matrices Al , Nl and the solu-
tion x(l)∗ = 0 or x(l)∗ = Al−1(−ql) of the LCP(Al, ql ) from Lemma 1. Solving Nlx = bl 
and implementing back substitution, then we begin the whole solving and construction 
process of x∗ . The order of the linear complementarity problems is decreased gradually 
and it satisfies

and the solution x∗ is derived from construction, both of with are the main characters 
of the reduced order method, whose concrete pseudo codes are shown in Sect.  3. 
Besides, based on the proofs of Theorem 2 and Theorem 3, if we modify the reduced 
order method and add the expression of w, then w∗ can be obtained accompanied 
with the solution x∗ , that is, w∗ can also be obtained by construction rather than by 
the expression w∗ = Ax∗ + q . At the end of this paragraph, we remark here that the 
proposed reduced order method is different from [24] and [25], both of which did 
not reduce the order of the complementarity problem, however, the reduced order 
method integrates the searching process of the integer l in Theorem 3, the solving 
processes of these low order linear equations and the construction of the solution 
x∗ in together. In addition, the former [24] discussed the LCP(A, q) with a Stieltjes 
matrix, which is a particular M-matrix, and the reduced order method can solve the 
LCP(A, q) with a general M-matrix.

Sr−1
N

= {i ∶ qr−1
i

< 0} = {i1r−1 , i2r−1 , ..., isr−1} ≠ Φ,

Sr−1
P

= {j ∶ qr−1
j

≥ 0} = {j1r−1 , i2r−1 , ..., jtr−1}.

Ar−1 = Ar−2

(Sr−2
P

,Sr−2
P

)
− Ar−2

(Sr−2
P

,Sr−2
N

)
Ar−2

(Sr−2
N

,Sr−2
N

)

−1
Ar−2

(Sr−2
N

,Sr−2
P

)
,

qr−1 = �
r−2
2

− Ar−2

(Sr−2
P

,Sr−2
N

)
Ar−2

(Sr−2
N

,Sr−2
N

)

−1
�
r−2
1

,

�
r−1
1

= (qr−1
i
1r−1

, qr−1
i
2r−1

, ..., qr−1
isr−1

)T,

l∑
r=1

Order(Nrx = br) + Order(LCP(Al, ql)) = n
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3  Algorithm

In this section, we present the pseudo codes of the reduced order method based on 
Lemma 1 and Theorems 1–3.1

1 The matlab(2016a+) code is available on: https://github.com/HeanJean/reduceOrderMethhod.
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4  Numerical Experiment

In this section, we present three examples. The first example is a low order case, 
which is to show the solving process of the reduced order method. The second 
example is a high order case, which is to show the effectiveness of the reduced 
order method. The third example is to show that the reduced order method can be 
applied to solve the LCP(A, q) with an inverse M-matrix.

Example 1 Let the system matrix A in the LCP(A, q) be

and let the variable vector q be

respectively. It’s easy to verify that the matrix A is an M-matrix.
(I) For q̄ , we have the sets SN = {1, 3} ≠ Φ , SP = {2, 4, 5} and

From Theorem 1, we know that the solution x̄∗ is

(II) For q̂ , we also have the sets SN = {1, 3} ≠ Φ , SP = {2, 4, 5} and

A =

⎛
⎜⎜⎜⎜⎝

1 0 − 1 0 − 1

−1 2 0 − 1 − 1

0 − 1 3 − 1 0

−1 0 − 1 4 − 1

0 − 1 − 1 0 5

⎞
⎟⎟⎟⎟⎠
,

q̄ =
(
−1, 2,−1, 2, 1

)T
, q̂ =

(
−1, 1, 1, 0, 1

)T
,

A(SN ,SN )
=

�
1 − 1

0 3

�
, v̄ = A−1

(SN ,SN )
(−�̄1) =

⎛
⎜⎜⎜⎝

1
1

3

0
1

3

⎞
⎟⎟⎟⎠

�
1

1

�
=

⎛
⎜⎜⎜⎝

4

3

1

3

⎞
⎟⎟⎟⎠
.

�̄2 + A(SP ,SN )
v̄ =

⎛
⎜⎜⎝

2

2

1

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

−1 0

−1 − 1

0 − 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

4

3

1

3

⎞
⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

2

3

1

3

2

3

⎞⎟⎟⎟⎟⎟⎠

≥ 0.

x̄∗ =
(

4

3
, 0,

1

3
, 0, 0

)T

.

v̂ =A−1

(SN ,SN )
(−�̂1) = v̄ =

⎛
⎜⎜⎜⎝

4

3

1

3

⎞
⎟⎟⎟⎠
,

q̂1 =�̂2 + A(SP ,SN )
v̂ =

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

−1 0

−1 − 1

0 − 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

4

3

1

3

⎞
⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

−
1

3

−
5

3

2

3

⎞
⎟⎟⎟⎟⎟⎠

.
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So, from Theorem 2, the LCP(A, q̂ ) can be transformed into a low order linear com-
plementarity problem with a linear system of equations, that is,

where

and the low order linear complementarity problem is established and can be simpli-
fied as

For the linear complementarity problem (6), we have S1
N
= {1, 2} ≠ Φ , S1

P
= {3} and

So, from Theorem 3, the linear complementarity problem (6) can be transformed 
into a low order linear complementarity problem with a linear system again, that is,
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where the second expression can be simplified as

Then, from Lemma 1, the solution of (8) is x̂∗
5
=

1

2

2
=

1

4
 . Combining with (7) and (5), 

the solution of the original LCP(A, q̂ ) can be constructed as

From (II), we can find that the LCP(A, q̂ ) is transformed into a low order linear com-
plementarity problem (8) with two low order linear systems of equations: (5) and 
(7).

Example 2 In this example, we consider the high order cases and show the effective-
ness of the reduced order method, that is Algorithm 1 presented in Sect. 3. Let A in 
the LCP(A, q) be a tridiagonal M-matrix, that is

with d = 2 , d = 3 and d = 4 , respectively. The matrix A with d = 3 arises from the 
American Option Pricing problems with � = 1 in [23], see [6, 23] for details. The 
matrix A with d = 4 comes from the finite difference discretization of a free bound-
ary value problem and we consider a particular case here, see [7, 17] for details. Set 
q to be an arbitrary vector, that is q is generated by

where “ randn ” is a function in Matlab software. We consider the running time 
(CPU), the number (l) of the produced linear equations and the residual error 
(ERROR), where ERROR is defined as

here,“norm” and “min” are two functions in Matlab software; see [7, 17]. Set 
n = 1000 and carry out 3 experiments for d = 2 , d = 3 and d = 4 , respectively, then 
we obtain Table 1 as follows.

Here, we set qi ( i = 1, 2, 3 ) to be same for the three cases: d = 2 , d = 3 and d = 4 . 
From Table 1, we can find that although the precision of the numerical solution will 
decease when too many linear equations are produced in the solving procession (the 
number l of the linear equations is determined by the LCP(A, q) itself), the reduced 
order method is effective for solving the LCP(A, q) with an M-matrix.

Example 3 The reduced order method is presented for the LCP(A,  q) with an 
M-matrix, however, if the inverse of A is an M-matrix, that is, A−1 is an M-matrix, 
then the LCP(A, q) can equivalently be reformulated as
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A = trid(−1, d,−1) ∈ Rn×n

q = randn(n, 1),

ERROR = norm(min(x,Ax + q)),
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which is a linear complementarity problem with an M-matrix. If we denote the 
reformulated linear complementarity problem as LCP(A−1,A−1(−q)) , then it can be 
solved for w∗ by the reduced order method. Thus we can obtain the solution x∗ of the 
LCP(A, q) easily through the expression

We consider a low order case to show this solving procession as follows. Set A and q 
in the LCP(A, q) to be

then A is an inverse M−matrix. By the reduced order method and (9) with (10), the 
solutions are

respectively.

5  Concluding Remark

In this paper, we provide a direct method for solving the LCP(A,  q) with an 
M-matrix, that is the reduced order method. By this method, the LCP(A, q) can 
ultimately be transformed into an equivalent complementarity problem with some 
low order linear equations. The numerical experiments show the accuracy and the 
effectiveness of this method.
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