77 research outputs found

    Preparation of Monolayer MoS\u3csub\u3e2\u3c/sub\u3e Quantum Dots using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS\u3csub\u3e2\u3c/sub\u3e Targets in Water

    Get PDF
    Zero-dimensional MoS2 quantum dots (QDs) possess distinct physical and chemical properties, which have garnered them considerable attention and facilitates their use in a broad range of applications. In this study, we prepared monolayer MoS2 QDs using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water. The morphology, crystal structures, chemical, and optical properties of the MoS2 QDs were characterized by transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, UV–vis absorption spectra, and photoluminescence spectra. The analysis results show that highly pure, uniform, and monolayer MoS2 QDs can be successfully prepared. Moreover, by temporally shaping a conventional single pulse into a two-subpulse train, the production rate of MoS2 nanomaterials (including nanosheets, nanoparticles, and QDs) and the ratio of small size MoS2 QDs can be substantially improved. The underlying mechanism is a combination of multilevel photoexfoliation of monolayer MoS2 and water photoionization–enhanced light absorption. The as-prepared MoS2 QDs exhibit excellent electrocatalytic activity for hydrogen evolution reactions because of the abundant active edge sites, high specific surface area, and excellent electrical conductivity. Thus, this study provides a simple and green alternative strategy for the preparation of monolayer QDs of transition metal dichalcogenides or other layered materials

    Digital Twin for Accelerating Sustainability in Positive Energy District: A Review of Simulation Tools and Applications

    Get PDF
    A digital twin is regarded as a potential solution to optimize positive energy districts (PED). This paper presents a compact review about digital twins for PED from aspects of concepts, working principles, tools/platforms, and applications, in order to address the issues of both how a digital PED twin is made and what tools can be used for a digital PED twin. Four key components of digital PED twin are identified, i.e., a virtual model, sensor network integration, data analytics, and a stakeholder layer. Very few available tools now have full functions for digital PED twin, while most tools either have a focus on industrial applications or are designed for data collection, communication and visualization based on building information models (BIM) or geographical information system (GIS). Several observations gained from successful application are that current digital PED twins can be categorized into three tiers: (1) an enhanced version of BIM model only, (2) semantic platforms for data flow, and (3) big data analysis and feedback operation. Further challenges and opportunities are found in areas of data analysis and semantic interoperability, business models, data security, and management. The outcome of the review is expected to provide useful information for further development of digital PED twins and optimizing its sustainability

    Prognostic Value of MicroRNA-20b in Acute Myeloid Leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a highly heterogeneous disease that requires fine-grained risk stratification for the best prognosis of patients. As a class of small non-coding RNAs with important biological functions, microRNAs play a crucial role in the pathogenesis of AML. To assess the prognostic impact of miR-20b on AML in the presence of other clinical and molecular factors, we screened 90 AML patients receiving chemotherapy only and 74 also undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) from the Cancer Genome Atlas (TCGA) database. In the chemotherapy-only group, high miR-20b expression subgroup had shorter event-free survival (EFS) and overall survival (OS, both P < 0.001); whereas, there were no significant differences in EFS and OS between high and low expression subgroups in the allo-HSCT group. Then we divided all patients into high and low expression groups based on median miR-20b expression level. In the high expression group, patients treated with allo-HSCT had longer EFS and OS than those with chemotherapy alone (both P < 0.01); however, there were no significant differences in EFS and OS between different treatment subgroups in the low expression group. Further analysis showed that miR-20b was negatively correlated with genes in "ribosome," "myeloid leukocyte mediated immunity," and "DNA replication" signaling pathways. ORAI2, the gene with the strongest correlation with miR-20b, also had significant prognostic value in patients undergoing chemotherapy but not in the allo-HSCT group. In conclusion, our findings suggest that high miR-20b expression is a poor prognostic indicator for AML, but allo-HSCT may override its prognostic impact

    Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries

    Get PDF
    Abstract(#br)Lithium sulfur (Li-S) batteries are attracting increasing attentions as promising next-generation rechargeable batteries. However, the rapid capacity fading of sulfur cathodes caused by the shuttling of polysulfide intermediates between the cathodes and anodes restricts the application of Li-S batteries. In this work, a facile wet-chemistry method is developed for the direct synthesis of few-molecular-layer thin metal-organic framework (MOF) nanosheets without using surfactant. By assembling these ultrathin MOF nanosheets with a facile vacuum filtration method, a highly oriented and flexible MOF membrane with favorable mechanical properties is achieved for the first time. The excellent features make the as-prepared MOF nanosheets ideal to fabricate lightweight interlayer modified separators for suppressing the polysulfide shuttling of Li-S batteries. When using the MOF membrane modified separator, the Li-S batteries made from commercial carbon materials exhibits the significantly enhanced cycling stabilities. This work brings new opportunities for the synthesis and application of MOF materials

    Prognostic role of Wnt and Fzd gene families in acute myeloid leukaemia

    Get PDF
    Wnt-Fzd signalling pathway plays a critical role in acute myeloid leukaemia (AML) progression and oncogenicity. There is no study to investigate the prognostic value of Wnt and Fzd gene families in AML. Our study screened 84 AML patients receiving chemotherapy only and 71 also undergoing allogeneic haematopoietic stem cell transplantation (allo-HSCT) from the Cancer Genome Atlas (TCGA) database. We found that some Wnt and Fzd genes had significant positive correlations. The expression levels of Fzd gene family were independent of survival in AML patients. In the chemotherapy group, AML patients with high Wnt2B or Wnt11 expression had significantly shorter event-free survival (EFS) and overall survival (OS); high Wnt10A expressers had significantly longer OS than the low expressers (all P < .05), whereas, in the allo-HSCT group, the expression levels of Wnt gene family were independent of survival. We further found that high expression of Wnt10A and Wnt11 had independent prognostic value, and the patients with high Wnt10A and low Wnt11 expression had the longest EFS and OS in the chemotherapy group. Pathway enrichment analysis showed that genes related to Wnt10A, Wnt11 and Wnt 2B were mainly enriched in 'cell morphogenesis involved in differentiation', 'haematopoietic cell lineage', 'platelet activation, signalling and aggregation' and 'mitochondrial RNA metabolic process' signalling pathways. Our results indicate that high Wnt2B and Wnt11 expression predict poor prognosis, and high Wnt10A expression predicts favourable prognosis in AML, but their prognostic effects could be neutralized by allo-HSCT. Combined Wnt10A and Wnt11 may be a novel prognostic marker in AML
    • …
    corecore