253 research outputs found
Paradoxical leadership, team adaptation and team performance: The mediating role of inclusive climate
In an increasingly complex and changing competitive environment, organizations inevitably face various conflicting demands, such as the contradiction between the psychological needs of employees and the organization’s performance requirements. Paradoxical leadership could focus on these competing needs of the organization and employees in multiple ways simultaneously. According to the trickle-down effect of social learning theory, we investigated whether and how paradoxical leadership may increase team adaptation and team performance. The study had a time-lagged survey design and included 254 team members and 60 leaders in 60 work teams in mainland China. The results of the structural equation modeling analysis indicated that paradoxical leadership is an essential predictor of team adaptation and performance, and that inclusive climate is mediating in this relationship. Our findings reveal a mechanism underlying the benefits of paradoxical leadership on team adaptation and team performance from a team-level perspective
The correlation study between the length and angle of ascending aortic and the incidence risk of acute type A aortic dissection
ObjectiveThis study utilized computed tomography angiography (CTA) to assess the risk of acute type A aortic dissection (ATAAD) by analyzing the imaging morphology indicators of the ascending aorta, along with the relevant risk factors associated with aortic dissection.MethodsThe study utilized a retrospective observational research design. The population consisted of 172 patients who received treatment in the Department of Cardiothoracic Surgery at Qilu Hospital, Shandong University, from January 2018 to December 2022. The patients were divided into two groups: the ATAAD group (n = 97) and the thoracic aortic aneurysm group (TAA, n = 75). Demographic data and ascending aorta CTA measurements were collected from all patients. Single factor and multivariate logistic regression were employed to analyze the statistical differences in clinical data and ascending aorta CTA imaging morphology indicators between the two groups.ResultsThe variables were included in logistic multivariate analysis for further screening, indicating that the length of the ascending aorta (LAA) before ATAAD (OR = 3.365; 95% CI :1.742–6.500, P<0.001), ascending arch angle (asc-arch angle, OR = 0.902; 95% CI: 0.816–0.996, P = 0.042) and the maximum aortic diameter (MAD) before ATAAD, (OR = 0.614; 95% CI: 0.507–0.743, P<0.001) showed statistically significant differences.ConclusionsThis study suggests that increased LAA and MAD, as well as a smaller asc-arch angle may be high-risk factors for the onset of ATAAD
Targeting P-Glycoprotein: Nelfinavir Reverses Adriamycin Resistance in K562/ADR Cells
Background/Aims: The emergence of multidrug resistance (MDR) caused by P-glycoprotein (P-gp) overexpression is a serious obstacle to the treatment of chronic myelocytic leukemia. In recent years, some clinical trials have shown that nelfinavir (NFV), a traditional anti-HIV drug, has anti-cancer effects. Some researchers have also shown NFV might be a potential P-gp inhibitor. This study is aimed at investigating whether nelfinavir can act as an MDR-reversal drug and to clarify its molecular mechanism as well. Methods: K562 and K562/ADR cell lines were applied in the study. Cytotoxicity was detected by CCK-8 reagents. Cell apoptosis was detected by flow cytometry and inverted fluorescence microscopy to detect the binding of apoptotic dyes to cells. Western blot was used to detect the expression of proteins. Drug-protein molecular docking simulation by using Sybyl-x 2.0 software. Results: Non-toxic concentrations of NFV (1.25–5 μM) could reverse Adriamycin (ADR), colchicine, paclitaxel, and imatinib resistance of K562/ADR cells, with reversal indexes of up to 10.8, 7.4, 57, and 9.3, respectively. NFV inhibited P-gp efflux function, as evidenced by the significant increase in the intracellular accumulation of ADR and Rho-123, without affecting P-gp protein and mRNA expression levels. Further ATP content detection and molecular docking simulations showed that NFV could decrease intracellular ATP content and has a high affinity with the active functional regions of P-gp, respectively. When co-administered with ADR, NFV increased intracellular reactive oxygen species as well as blocked the ERK/Akt signaling pathway, leading to cell apoptosis. Conclusion: NFV inhibited P-gp function, decreased intracellular ATP content, and promoted cell apoptosis in K562/ADR cells, thereby reversing MDR. These findings encourage further animal and clinical MDR studies with a combination therapy consisting of NFV and chemotherapeutic drugs
The Kalanchoe genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism
Crassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis that has evolved independently many times in diverse lineages of flowering plants. We hypothesize that convergent evolution of protein sequence and temporal gene expression underpins the independent emergences of CAM from C3 photosynthesis. To test this hypothesis, we generate a de novo genome assembly and genome-wide transcript expression data for Kalanchoë fedtschenkoi, an obligate CAM species within the core eudicots with a relatively small genome (~260 Mb). Our comparative analyses identify signatures of convergence in protein sequence and re-scheduling of diel transcript expression of genes involved in nocturnal CO2 fixation, stomatal movement, heat tolerance, circadian clock, and carbohydrate metabolism in K. fedtschenkoi and other CAM species in comparison with non-CAM species. These findings provide new insights into molecular convergence and building blocks of CAM and will facilitate CAM-into-C3 photosynthesis engineering to enhance water-use efficiency in crops
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Research on Reducer Power Measurement System of Bridge Crane
In this paper, the reducer is taken as the research object for power measurement. First, the demand of reducer power measurement is analyzed, and the method for measuring power is determined. Then, in view of the power measurement method adopted by the reducer, the overall framework of the measuring system is carried out, and the host system is designed
Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenerators
With the rapid development of the internet of things (IoT), sustainable self-powered wireless sensory systems and diverse wearable and implantable electronic devices have surged recently. Under such an opportunity, nanogenerators, which can convert continuous mechanical energy into usable electricity, have been regarded as one of the critical technologies for self-powered systems, based on the high sensitivity, flexibility, and biocompatibility of piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs). In this review, we have thoroughly analyzed the materials and structures of wearable and implantable PENGs and TENGs, aiming to make clear how to tailor a self-power system into specific applications. The advantages in TENG and PENG are taken to effectuate wearable and implantable human-oriented applications, such as self-charging power packages, physiological and kinematic monitoring, in vivo and in vitro healing, and electrical stimulation. This review comprehensively elucidates the recent advances and future outlook regarding the human body’s self-powered systems
- …