9 research outputs found

    Discovery of Novel MicroRNAs in Rat Kidney Using Next Generation Sequencing and Microarray Validation

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. The latest version of the miRBase database (Release 18) includes 1,157 mouse and 680 rat mature miRNAs. Only one new rat mature miRNA was added to the rat miRNA database from version 16 to version 18 of miRBase, suggesting that many rat miRNAs remain to be discovered. Given the importance of rat as a model organism, discovery of the completed set of rat miRNAs is necessary for understanding rat miRNA regulation. In this study, next generation sequencing (NGS), microarray analysis and bioinformatics technologies were applied to discover novel miRNAs in rat kidneys. MiRanalyzer was utilized to analyze the sequences of the small RNAs generated from NGS analysis of rat kidney samples. Hundreds of novel miRNA candidates were examined according to the mappings of their reads to the rat genome, presence of sequences that can form a miRNA hairpin structure around the mapped locations, Dicer cleavage patterns, and the levels of their expression determined by both NGS and microarray analyses. Nine novel rat hairpin precursor miRNAs (pre-miRNA) were discovered with high confidence. Five of the novel pre-miRNAs are also reported in other species while four of them are rat specific. In summary, 9 novel pre-miRNAs (14 novel mature miRNAs) were identified via combination of NGS, microarray and bioinformatics high-throughput technologies

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    Simulation With Learning Agents

    No full text
    We propose that learning agents (LAs) be incorporated into simulation environments in order to model the adaptive behavior of hunans. These LAs adapt to specific circumstances and events daring the simulation run. They would select tasks to be accomplished among a given set of tusks as the simulation progresses, or synthesize tasks for themselves based on their observations of the environment and on information they may receive from other agents. We investigate an approach in which agents are assigned goals when the simulation starts and then pursue these goals autonomously and adoptively. During the simulation, agents progressively improve their ability to accomplish their goals effectively and safely. Agents learn from their own observations and from the experience of other agents with whom they exchange information. Each LA starts with a given representation of the simulation environment from which it progressively constructs its own internal representation and uses it to make decisions. This paper describes how learning neural nemorks can support this approach and shows that goal-based learning may be used effectively used in this context. An example simulation is presented in \u27which agents represent manned vehicles; they are assigned the goal of traversing a dangerous metropolitan grid safely and rapidly using goal-based reinforcement learning with neural networks and compared to three other algorithms. © 2001 IEEE
    corecore