9 research outputs found

    Karyotype of the blastocoel fluid demonstrates low concordance with both trophectoderm and inner cell mass

    Get PDF
    Objective To compare the genomic profiles of blastocoel fluid (BF), inner cell mass (ICM), and trophectoderm (TE) cells derived from the same blastocyst. Design Prospective study. Setting Academic and in vitro fertilization units. Patient(s) Sixteen donated cryopreserved embryos at blastocyst stage. Intervention(s) BF, TE, and ICM cells were retrieved from each blastocyst for chromosome analysis by means of next-generation sequencing (NGS). Main Outcome Measure(s) Aneuploidy screening and assessment of mosaicism in BF, TE and ICM samples with subsequent comparison of genomic profiles between the three blastocyst compartments. Result(s) Out of 16 blastocysts, 10 BF samples and 14 TE and ICM samples provided reliable NGS data for comprehensive chromosome analysis. Only 40.0% of BF-DNA karyotypes were fully concordant with TE or ICM, compared with 85.7% concordance between TE and ICM. In addition, BF-DNA was burdened with mosaic aneuploidies and the total number of affected chromosomes in BF was significantly higher compared with the TE and ICM. Conclusion(s) BF-DNA can be successfully amplified and subjected to NGS, but owing to increased discordance with ICM and TE, BF does not adequately represent the status of the rest of the embryo. To overcome biologic and technical challenges associated with BF sampling and processing, blastocentesis would require improvement in both laboratory protocols and aneuploidy calling algorithms. Therefore, TE biopsy remains the most effective way to predict embryonic karyotype, and the use of BF as a single source of DNA for preimplantation genetic screening is not yet advised

    LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy

    Get PDF
    Purpose High frequency of aneuploidy in meiosis and cleavage stage coincides with waves of epigenetic genome reprogramming that may indicate a possible association between epigenetic mechanisms and aneuploidy occurrence. This study aimed to assess the methylation level of the long interspersed repeat element 1 (LINE-1) retrotransposon in chorionic villi of first trimester miscarriages with a normal karyotype and aneuploidy. Methods The methylation level was assessed at 19 LINE-1 promoter CpG sites in chorionic villi of 141 miscarriages with trisomy of chromosomes 2, 6, 8-10, 13-15, 16, 18, 20-22, and monosomy X using massive parallel sequencing. Results The LINE-1 methylation level was elevated statistically significant in chorionic villi of miscarriages with both trisomy (45.2 +/- 4.3%) and monosomy X (46.9 +/- 4.2%) compared with that in induced abortions (40.0 +/- 2.4%) (p < 0.00001). The LINE-1 methylation levels were specific for miscarriages with different aneuploidies and significantly increased in miscarriages with trisomies 8, 14, and 18 and monosomy X (p < 0.05). The LINE-1 methylation level increased with gestational age both for group of miscarriages regardless of karyotype (R = 0.21, p = 0.012) and specifically for miscarriages with trisomy 16 (R = 0.48, p = 0.007). LINE-1 methylation decreased with maternal age in miscarriages with a normal karyotype (R = - 0.31, p = 0.029) and with trisomy 21 (R = - 0.64, p = 0.024) and increased with paternal age for miscarriages with trisomy 16 (R = 0.38, p = 0.048) and monosomy X (R = 0.73, p = 0.003). Conclusion Our results indicate that the pathogenic effects of aneuploidy in human embryogenesis can be supplemented with significant epigenetic changes in the repetitive sequences

    Parasitic gamasid mites (Acari: Mesostigmata) associated with bats (Chiroptera: Vespertilionidae) on Kunashiri Island, with a description of a new species Spinturnix uchikawai sp. nov.

    No full text
    The article presents new data on gamasid mites associated with bat (Chiroptera: Vespertilionidae) on Kunashiri Island. Three species (Macronyssus charusnurensis, M. granulosus, M. hosonoi) are described for this area for the first time. A description of a new species Spinturnix uchikawai sp. nov., illustrations, and key to species of the genus Spinturnix for the boreal zone of Eastern Palaearctic region are given

    Parasitic gamasid mites (Acari: Mesostigmata) associated with bats (Chiroptera: Vespertilionidae) on Kunashiri Island, with a description of a new species Spinturnix uchikawai sp. nov.

    No full text
    The article presents new data on gamasid mites associated with bat (Chiroptera: Vespertilionidae) on Kunashiri Island. Three species (Macronyssus charusnurensis, M. granulosus, M. hosonoi) are described for this area for the first time. A description of a new species Spinturnix uchikawai sp. nov., illustrations, and key to species of the genus Spinturnix for the boreal zone of Eastern Palaearctic region are given

    Control of Columnar Grain Microstructure in CSD LaNiO<sub>3</sub> Films

    No full text
    Conductive LaNiO3 (LNO) films with an ABO3 perovskite structure deposited on silicon wafers are a promising material for various electronics applications. The creation of a well-defined columnar grain structure in CSD (Chemical Solution Deposition) LNO films is challenging to achieve on an amorphous substrate. Here, we report the formation of columnar grain structure in LNO films deposited on the Si-SiO2 substrate via layer-by-layer deposition with the control of soft-baking temperature and high temperature annealing time of each deposited layer. The columnar structure is controlled not by typical heterogeneous nucleation on the film/substrate interface, but by the crystallites’ coalescence during the successive layers’ deposition and annealing. The columnar structure of LNO film provides the low resistivity value ρ~700 µOhm·cm and is well suited to lead zirconate-titanate (PZT) film growth with perfect crystalline structure and ferroelectric performance. These results extend the understanding of columnar grain growth via CSD techniques and may enable the development of new materials and devices for distinct applications

    Case Report: Compound Heterozygous Variants of the MAN1B1 Gene in a Russian Patient with Rafiq Syndrome

    No full text
    Rafiq syndrome (RAFQS) is a congenital disorder of glycosylation (CDG) that is caused by mutations in the MAN1B1 gene and characterized by impaired protein and lipid glycosylation. RAFQS is characterized by a delay in intellectual and motor development, facial and other dysmorphism, truncal obesity, behavior problems, and hypotonia. We describe a Russian patient with delayed intellectual and motor development, a lack of speech, disorientation in space and time, impaired attention and memory, and episodes of aggression. Screening for lysosomal, amino acid, organic acid, and mitochondrial disorders was normal. The patient was referred for the targeted sequencing of the &ldquo;Hereditary Metabolic Disorders&rdquo; panel. The genetic testing revealed two heterozygous pathogenic variants in the MAN1B1 gene: the previously reported c.1000C &gt; T (p.Arg334Cys) and the novel c.1065 + 1 G &gt; C. Thus, the patient&rsquo;s clinical picture and genetic analysis confirmed RAFQS in the patient

    Identification of differentially methylated genes in first‑trimester placentas with trisomy 16

    No full text
    The presence of an extra chromosome in the embryo karyotype often dramatically affects the fate of pregnancy. Trisomy 16 is the most common aneuploidy in first-trimester miscarriages. The present study identified changes in DNA methylation in chorionic villi of miscarriages with trisomy 16. Ninety-seven differentially methylated sites in 91 genes were identified (false discovery rate (FDR) 0.15) using DNA methylation arrays. Most of the differentially methylated genes encoded secreted proteins, signaling peptides, and receptors with disulfide bonds. Subsequent analysis using targeted bisulfite massive parallel sequencing showed hypermethylation of the promoters of specific genes in miscarriages with trisomy 16 but not miscarriages with other aneuploidies. Some of the genes were responsible for the development of the placenta and embryo (GATA3-AS1, TRPV6, SCL13A4, and CALCB) and the formation of the mitotic spindle (ANKRD53). Hypermethylation of GATA3-AS1 was associated with reduced expression of GATA3 protein in chorionic villi of miscarriages with trisomy 16. Aberrant hypermethylation of genes may lead to a decrease in expression, impaired trophoblast differentiation and invasion, mitotic disorders, chromosomal mosaicism and karyotype self-correction via trisomy rescue mechanisms

    Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss

    No full text
    Pregnancy loss is often caused by chromosomal abnormalities of the conceptus. The prevalence of these abnormalities and the allocation of (ab)normal cells in embryonic and placental lineages during intrauterine development remain elusive. In this study, we analyzed 1,745 spontaneous pregnancy losses and found that roughly half (50.4%) of the products of conception (POCs) were karyotypically abnormal, with maternal and paternal age independently contributing to the increased genomic aberration rate. We applied genome haplarithmisis to a subset of 94 pregnancy losses with normal parental and POC karyotypes. Genotyping of parental DNA as well as POC extra-embryonic mesoderm and chorionic villi DNA, representing embryonic and trophoblastic tissues, enabled characterization of the genomic landscape of both lineages. Of these pregnancy losses, 35.1% had chromosomal aberrations not previously detected by karyotyping, increasing the rate of aberrations of pregnancy losses to 67.8% by extrapolation. In contrast to viable pregnancies where mosaic chromosomal abnormalities are often restricted to chorionic villi, such as confined placental mosaicism, we found a higher degree of mosaic chromosomal imbalances in extra-embryonic mesoderm rather than chorionic villi. Our results stress the importance of scrutinizing the full allelic architecture of genomic abnormalities in pregnancy loss to improve clinical management and basic research of this devastating condition
    corecore