8 research outputs found

    Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma

    Get PDF
    X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations

    Numerical Method for Solving the Inverse Problem of Quantum Scattering Theory

    No full text
    We present a new numerical method for solving the problem of the reconstruction of interaction potential by a phase shift given on a set of closed intervals in (l,k)-plane, satisfying certain geometrical ”Staircase Condition”. The method is based on the Variable Phase Approach and on the modification of the Continuous Analogy of the Newton Method

    Measurement and simulations of hollow atom X-ray spectra of solid-density relativistic plasma created by high-contrast PW optical laser pulses

    No full text
    K-shell spectra of solid Al excited by petawatt picosecond laser pulses have been investigated at the Vulcan PW facility. Laser pulses of ultrahigh contrast with an energy of 160J on the targetallow studies of interactions between the laser field and solid state matter at 10W/cm. Intense X-ray emission of KK hollow atoms (atoms without n=1 electrons) from thin aluminum foils is observed from optical laser plasma for the first time. Specifically for 1.5μm thin foil targets the hollow atom yield dominates the resonance line emission. It is suggested that the hollow atoms are predominantly excited by the impact of X-ray photons generated by radiation friction to fast electron currents in solid-density plasma due to Thomson scattering and bremsstrahlung in the transverse plasma fields. Numerical simulations of Al hollow atom spectra using the ATOMIC code confirm that the impact of keV photons dominates the atom ionization. Our estimates demonstrate that solid-density plasma generated by relativistic optical laser pulses provide the source of a polychromatic keV range X-ray field of 10W/cm intensity, and allows the study of excited matter in the radiation-dominated regime. High-resolution X-ray spectroscopy of hollow atom radiation is found to be a powerful tool to study the properties of high-energy density plasma created by intense X-ray radiation

    On the design of experiments for the study of extreme field limits in the interaction of laser with ultrarelativistic electron beam

    No full text
    We propose the experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons for studying extreme field limits in the nonlinear interaction of electromagnetic waves. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed in the laser plasma experiments. This will result in a new powerful source of ultra short high brightness gamma-ray pulses. A possibility of the demonstration of the electron-positron pair creation in vacuum in a multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.Comment: 33 pages, 5 figures, 1 tabl
    corecore