158 research outputs found

    Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics.

    Get PDF
    In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material's mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью

    Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (P interaction  = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications

    Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population.

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications

    Electrically fueled active supramolecular materials

    No full text

    Designing late-transition metal catalysts for olefin insertion polymerization and copolymerization

    No full text
    The innovation of polyolefin with unique architecture, composition and topology continues to inspire polymer chemists. An exciting recent direction in the polyolefin field is the design of new catalysts based on late-transition metals. In this review, we highlight recent developments in rationally designing late-transition metal catalysts for olefin polymerization. The examples described in this review showcase the power of the design of well-defined late-metal catalysts for tailored polyolefin synthesis, which may usher in a new era in the polymer industry. © 2010 The Royal Society of Chemistry

    Design of cyclophane-based late transition metal catalyst for polymerization of olefins

    No full text
    New catalysts design! In the effective polymerization of ethylene, design of new catalyst is achieved by exploiting the macrocyclic architecture of a cyclophane-based diamine ligand. In the ligand design, the metal binding sites is strategically positioned at the core of cyclophanes to chelate transition metals. The cyclophane framework shields all direction of the catalytic melt center except leaving two cis coordination sites open in the front: one for monomer coordination and the other for the growing polymer chain. The well-defined cavity and stretically hindered microenvironment of cyclophanes offer great opportunities for fine –tuning the catalytic properties. The rigid cyclophane framework also enhances the stability of transition metal center at the core of the cyclophane-based ligand is the key to the observed high activity, thermal stability and living polymerization activity of the catalyst. Likewise, the catalyst gave polymers with high degree of branching and high molecular weights as well as high incorporation of methyl acrylate

    Direct Synthesis of Polyamides via Catalytic Dehydrogenation of Diols and Diamines

    No full text
    corecore