81 research outputs found

    Genetic, parental and lifestyle factors influence telomere length

    Get PDF
    The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.We thank J. Dekens for management, A. Maatman and M. Platteel for technical support and K. Mc Intyre for English editing. This project was funded by the BBMRI grant for measuring telomere length and by a Rosalind Franklin Fellowship to A.Z. The researchers participated in this project are supported by Netherlands Heart Foundation (IN-CONTROL CVON grants 2012-03 and 2018-27); the Netherlands Organization for Scientific Research (NWO) Gravitation Netherlands Organ-on-Chip Initiative to J.F. and C.W.; NWO Gravitation Exposome-NL (024.004.017) to J.F., A.K. and A.Z.; NWO-VIDI (864.13.013) and NWO-VICI (VI.C.202.022) to J.F.; NWO-VIDI (016.178.056) to A.Z.; NWO-VIDI (917.14.374) to L.F.; NWO-VENI (194.006) to D.V.Z.; NWO-VENI (192.029) to M.W.; NWO Spinoza Prize SPI 92–266 to C.W.; the European Research Council (ERC) (FP7/2007–2013/ERC Advanced Grant 2012-322698) to C.W.; ERC Starting grant 637640 to L.F.; ERC Starting Grant 715772 to A.Z.; ERC Consolidator Grant (grant agreement No. 101001678) to J.F.; and RuG Investment Agenda Grant Personalized Health to C.W. MM work is supported by RYC- 2017-22249 and PID2019-107937GA-I00 grants. T.S. holds scholarships from the Junior Scientific Masterclass, University of Groningen[grant no. 17–34]. AR is funded by a Formación Personal Investigador (FPI) grant [grant no. PRE2019-090193]. The Lifelines Biobank initiative has been made possible by a subsidy from the Dutch Ministry of Health, Welfare and Sport; the Dutch Ministry of Economic Affairs; the University Medical Centre Groningen (UMCG, the Netherlands); the University of Groningen and the Northern Provinces of the Netherlands. The authors wish to acknowledge the services of the Lifelines Cohort Study, the contributing research centres delivering data to Lifelines and all the study participants. Finally, we would like to acknowledge the Genomics Coordination Centre (GCC) at the University Medical College Groningen for the HPC support and the MOLGENIS team for the cloud storage of the data associated with this work.Peer Reviewed"Article signat per 16 autors/es: Sergio Andreu-Sánchez, Geraldine Aubert, Aida Ripoll-Cladellas, Sandra Henkelman, Daria V. Zhernakova, Trishla Sinha, Alexander Kurilshikov, Maria Carmen Cenit, Marc Jan Bonder, Lude Franke, Cisca Wijmenga, Jingyuan Fu, Monique G. P. van der Wijst, Marta Melé, Peter Lansdorp & Alexandra Zhernakova"Postprint (published version

    An integrative systems genetics approach reveals potential causal genes and pathways related to obesity

    Get PDF
    Background: Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Methods: Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Results: Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate <0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. Conclusions: To our knowledge, this is the first study to perform an integrated genomics and transcriptomics (eQTL) study using, and modeling, genomic and subcutaneous adipose tissue RNA sequencing data on obesity in a porcine model. We detected several pathways and potential causal genes for obesity. Further validation and investigation may reveal their exact function and association with obesity

    Systematic analysis of relationships between plasma branched-chain amino acid concentrations and cardiometabolic parameters:an association and Mendelian randomization study

    Get PDF
    Abstract Background Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids that are associated with an increased risk of cardiometabolic diseases (CMD). However, there are still only limited insights into potential direct associations between BCAAs and a wide range of CMD parameters, especially those remaining after correcting for covariates and underlying causal relationships. Methods To shed light on these relationships, we systematically characterized the associations between plasma BCAA concentrations and a large panel of 537 CMD parameters (including atherosclerosis-related parameters, fat distribution, plasma cytokine concentrations and cell counts, circulating concentrations of cardiovascular-related proteins and plasma metabolites) in 1400 individuals from the Dutch population cohort LifeLines DEEP and 294 overweight individuals from the 300OB cohort. After correcting for age, sex, and BMI, we assessed associations between individual BCAAs and CMD parameters. We further assessed the underlying causality using Mendelian randomization. Results A total of 838 significant associations were detected for 409 CMD parameters. BCAAs showed both common and specific associations, with the most specific associations being detected for isoleucine. Further, we found that obesity status substantially affected the strength and direction of associations for valine, which cannot be corrected for using BMI as a covariate. Subsequent univariable Mendelian randomization (UVMR), after removing BMI-associated SNPs, identified seven significant causal relationships from four CMD traits to BCAA levels, mostly for diabetes-related parameters. However, no causal effects of BCAAs on CMD parameters were supported. Conclusions Our cross-sectional association study reports a large number of associations between BCAAs and CMD parameters. Our results highlight some specific associations for isoleucine, as well as obesity-specific effects for valine. MR-based causality analysis suggests that altered BCAA levels can be a consequence of diabetes and alteration in lipid metabolism. We found no MR evidence to support a causal role for BCAAs in CMD. These findings provide evidence to (re)evaluate the clinical importance of individual BCAAs in CMD diagnosis, prevention, and treatment

    Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity

    Get PDF
    Background: Although genome-wide association studies (GWAS) have identified hundreds of variants associated with a risk for autoimmune and immune-related disorders (AID), our understanding of the disease mechanisms is still limited. In particular, more than 90% of the risk variants lie in non-coding regions, and almost 10% of these map to long non-coding RNA transcripts (lncRNAs). lncRNAs are known to show more cell-type specificity than protein-coding genes. Methods: We aimed to characterize lncRNAs and protein-coding genes located in loci associated with nine AIDs which have been well-defined by Immunochip analysis and by transcriptome analysis across seven populations of peripheral blood leukocytes (granulocytes, monocytes, natural killer (NK) cells, B cells, memory T cells, naive CD4(+) and naive CD8(+) T cells) and four populations of cord blood-derived T-helper cells (precursor, primary, and polarized (Th1, Th2) T-helper cells). Results: We show that lncRNAs mapping to loci shared between AID are significantly enriched in immune cell types compared to lncRNAs from the whole genome (a <0.005). We were not able to prioritize single cell types relevant for specific diseases, but we observed five different cell types enriched (a <0.005) in five AID (NK cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, and psoriasis; memory T and CD8(+) T cells in juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis; Th0 and Th2 cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis). Furthermore, we show that co-expression analyses of lncRNAs and protein-coding genes can predict the signaling pathways in which these AID-associated lncRNAs are involved. Conclusions: The observed enrichment of lncRNA transcripts in AID loci implies lncRNAs play an important role in AID etiology and suggests that lncRNA genes should be studied in more detail to interpret GWAS findings correctly. The co-expression results strongly support a model in which the lncRNA and protein-coding genes function together in the same pathways

    Genome-wide association study reveals genetic variants associated with HIV-1C infection in a Botswana study population

    Get PDF
    Although there have been many studies of gene variant association with different stages of HIV/AIDS progression in United States and European cohorts, few gene-association studies have assessed genic determinants in sub-Saharan African populations, which have the highest density of HIV infections worldwide. We carried out genome-wide association studies on 766 study participants at risk for HIV-1 subtype C (HIV-1C) infection in Botswana. Three gene associations (AP3B1, PTPRA, and NEO1) were shown to have significant association with HIV-1C acquisition. Each gene association was replicated within Botswana or in the United States–African American or United States–European American AIDS cohorts or in both. Each associated gene has a prior reported influence on HIV/AIDS pathogenesis. Thirteen previously discovered AIDS restriction genes were further replicated in the Botswana cohorts, extending our confidence in these prior AIDS restriction gene reports. This work presents an early step toward the identification of genetic variants associated with and affecting HIV acquisition or AIDS progression in the understudied HIV-1C afflicted Botswana population

    Draft de novo Genome Assembly of the Elusive Jaguarundi, Puma yagouaroundi

    Get PDF
    The Puma lineage within the family Felidae consists of 3 species that last shared a common ancestor around 4.9 million years ago. Whole-genome sequences of 2 species from the lineage were previously reported: the cheetah (Acinonyx jubatus) and the mountain lion (Puma concolor). The present report describes a whole-genome assembly of the remaining species, the jaguarundi (Puma yagouaroundi). We sequenced the genome of a male jaguarundi with 10X Genomics linked reads and assembled the whole-genome sequence. The assembled genome contains a series of scaffolds that reach the length of chromosome arms and is similar in scaffold contiguity to the genome assemblies of cheetah and puma, with a contig N50 = 100.2 kbp and a scaffold N50 = 49.27 Mbp. We assessed the assembled sequence of the jaguarundi genome using BUSCO, aligned reads of the sequenced individual and another published female jaguarundi to the assembled genome, annotated protein-coding genes, repeats, genomic variants and their effects with respect to the protein-coding genes, and analyzed differences of the 2 jaguarundis from the reference mitochondrial genome. The jaguarundi genome assembly and its annotation were compared in quality, variants, and features to the previously reported genome assemblies of puma and cheetah. Computational analyzes used in the study were implemented in transparent and reproducible way to allow their further reuse and modification. </p

    Analytical “Bake-Off” of Whole Genome Sequencing Quality for the Genome Russia Project Using a Small Cohort for Autoimmune Hepatitis

    Get PDF
    A comparative analysis of whole genome sequencing (WGS) and genotype calling was initiated for ten human genome samples sequenced by St. Petersburg State University Peterhof Sequencing Center and by three commercial sequencing centers outside of Russia. The sequence quality, efficiency of DNA variant and genotype calling were compared with each other and with DNA microarrays for each of ten study subjects. We assessed calling of SNPs, indels, copy number variation, and the speed of WGS throughput promised. Twenty separate QC analyses showed high similarities among the sequence quality and called genotypes. The ten genomes tested by the centers included eight American patients afflicted with autoimmune hepatitis (AIH), plus one case’s unaffected parents, in a prelude to discovering genetic influences in this rare disease of unknown etiology. The detailed internal replication and parallel analyses allowed the observation of two of eight AIH cases carrying a rare allele genotype for a previously described AIH-associated gene (FTCD), plus multiple occurrences of known HLA-DRB1 alleles associated with AIH (HLA-DRB1-03:01:01, 13:01:01 and 7:01:01). We also list putative SNVs in other genes as suggestive in AIH influence

    Genetic and Microbial Associations to Plasma and Fecal Bile Acids in Obesity Relate to Plasma Lipids and Liver Fat Content

    Get PDF
    Bile acids (BAs) have been implicated in obesity-related conditions such as NAFLD and hyperlipidemia. Different human BAs exert variable biological activities. Chen et al. define genetic and microbial associations to plasma and fecal BA concentrations and composition in persons with obesity and establish their relationships with liver fat and lipid phenotypes
    • …
    corecore