60 research outputs found

    Electrodeposition of FeW-graphene composites: Effect of graphene oxide concentration on microstructure, hardness and corrosion properties

    Get PDF
    Graphene has emerged as excellent reinforcement for electrodeposited metallic composites. The poor stability of graphene in electrochemical baths makes it challenging to obtain uniform composite coatings. In this work, we investigate the possibility to electrodeposit FeW-graphene coatings with organic stablizers. Polydiallyldimethylammonium chloride is selected to stabilize the graphene oxide which is added into the electrolyte in various concentrations. Scanning electron microscopy and Raman analysis confirmed the successful co-deposition of graphene in all the coatings. The composition of the FeW matrix remained unaffected by the addition of graphene, while an increase in the crystallinity of the structure of the composites was observed. Graphene was retained even after the coatings were heat treated at 400 \ub0C for 1 h. The hardness and the corrosion resistance of the FeW-graphene composite were largely improved: a 22% increase in hardness and an 80% increase in corrosion resistance were measured compared to the graphene-free coating

    Characterization of the ModABC Molybdate Transport System of Pseudomonas putida in Nicotine Degradation

    Get PDF
    Pseudomonas putida J5 is an efficient nicotine-degrading bacterial strain that catabolizes nicotine through the pyrrolidine pathway. In our previous study, we used Tn5 transposon mutagenesis to investigate nicotine metabolism-associated genes, and 18 nicotine degradation-deficient mutants were isolated from 16,324 Tn5-transformants. Three of the mutants were Tn5 inserts into the modABC gene cluster that encoded an ABC-type, high-affinity, molybdate transporter. In-frame deletion of the modABC genes abolished the nicotine-degrading ability of strain J5, and complementation with modABC either from P. putida or Arthrobacter oxidans restored the degrading activity of the mutant to wild-type level. Nicotine degradation of J5 was inhibited markedly by addition of tungstate, a specific antagonist of molybdate. Molybdate at a non-physiologically high concentration (100 μM) fully restored nicotine-degrading activity and recovered growth of the modABC mutant in a nicotine minimal medium. Transcriptional analysis revealed that the expression of modABC was up-regulated at low molybdate concentrations and down-regulated at high moybdate concentrations, which indicated that at least one other system was able to transport molybdate, but with lower affinity. These results suggested that the molybdate transport system was essential to nicotine metabolism in P. putida J5

    Electrochemical exfoliation of graphite in H2SO4, Li2SO4 and NaClO4 solutions monitored in-situ by Raman microscopy and spectroscopy

    Get PDF
    The electrochemical exfoliation of graphite is one of the cheapest and most tunable industrial techniques to produce graphene nanosheets with tunable degree of oxidation and solubility. Anodic oxidation allows high-yield production of electrochemically exfoliated graphene oxide (EGO) in either acids or salt solutions, with the key role played by ions electrochemically driven in between the graphene sheets. This chemical intercalation is followed by a mesoscale mechanical exfoliation process, which is key for the high yield of the process, but which is still poorly understood. In this work, we use Raman spectroscopy to simultaneously monitor the intercalation and oxidation processes taking place on the surface of highly ordered pyrolytic graphite (HOPG) during electrochemical exfoliation. The mechanism of EGO formation in either acidic (0.5 M H2SO4) or neutral (0.5 M Li2SO4) electrolytes through blistering and cracking steps is discussed and described. This process is compared also to non-destructive intercalation of graphite in an organic electrolyte (1 M NaClO4 in acetonitrile). The results obtained show how high exfoliation yield and low defectivity shall be achieved by the combination of efficient, non-destructive intercalation followed by chemical decomposition of the intercalants and gas production

    Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage

    Get PDF
    Energy storage devices are important components in portable electronics, electric vehicles, and the electrical distribution grid. Batteries and supercapacitors have achieved great success as the spearhead of electrochemical energy storage devices, but need to be further developed in order to meet the ever-increasing energy demands, especially attaining higher power and energy density, and longer cycling life. Rational design of electrode materials plays a critical role in developing energy storage systems with higher performance. Graphene, the well-known 2D allotrope of carbon, with a unique structure and excellent properties has been considered a “magic” material with its high energy storage capability, which can not only aid in addressing the issues of the state-of-the-art lithium-ion batteries and supercapacitors, but also be crucial in the so-called post Li-ion battery era covering different technologies, e.g., sodium ion batteries, lithium-sulfur batteries, structural batteries, and hybrid supercapacitors. In this feature article, we provide a comprehensive overview of the strategies developed in our research to create graphene-based composite electrodes with better ionic conductivity, electron mobility, specific surface area, mechanical properties, and device performance than state-of-the-art electrodes. We summarize the strategies of structure manipulation and surface modification with specific focus on tackling the existing challenges in electrodes for batteries and supercapacitors by exploiting the unique properties of graphene-related materials

    Selective deposition of metal oxide nanoflakes on graphene electrodes to obtain high-performance asymmetric micro-supercapacitors

    Get PDF
    To meet the charging market demands of portable microelectronics, there has been a growing interest in high performance and low-cost microscale energy storage devices with excellent flexibility and cycling durability. Herein, interdigitated all-solid-state flexible asymmetric micro-supercapacitors (A-MSCs) were fabricated by a facile pulse current deposition (PCD) approach. Mesoporous Fe2O3 and MnO2 nanoflakes were functionally coated by electrodeposition on inkjet-printed graphene patterns as negative and positive electrodes, respectively. Our PCD approach shows significantly improved adhesion of nanostructured metal oxide with crack-free and homogeneous features, as compared with other reported electrodeposition approaches. The as-fabricated Fe2O3/MnO2 A-MSCs deliver a high volumetric capacitance of 110.6 F cm(-3) at 5 mu A cm(-2) with a broad operation potential range of 1.6 V in neutral LiCl/PVA solid electrolyte. Furthermore, our A-MSC devices show a long cycle life with a high capacitance retention of 95.7% after 10 000 cycles at 100 mu A cm(-2). Considering its low cost and potential scalability to industrial levels, our PCD technique could be an efficient approach for the fabrication of high-performance MSC devices in the future

    A robust, modular approach to produce graphene-MO X multilayer foams as electrodes for Li-ion batteries

    Get PDF
    Major breakthroughs in batteries would require the development of new composite electrode materials, with a precisely controlled nanoscale architecture. However, composites used for energy storage are typically a disordered bulk mixture of different materials, or simple coatings of one material onto another. We demonstrate here a new technique to create complex hierarchical electrodes made of multilayers of vertically aligned nanowalls of hematite (Fe 2 O 3 ) alternated with horizontal spacers of reduced graphene oxide (RGO), all deposited on a 3D, conductive graphene foam. The RGO nanosheets act as porous spacers, current collectors and protection against delamination of the hematite. The multilayer composite, formed by up to 7 different layers, can be used with no further processing as an anode in Li-ion batteries, with a specific capacity of up to 1175 μA h cm -2 and a capacity retention of 84% after 1000 cycles. Our coating strategy gives improved cyclability and rate capacity compared to conventional bulk materials. Our production method is ideally suited to assemble an arbitrary number of organic-inorganic materials in an arbitrary number of layers

    Controllable Coating Graphene Oxide and Silanes on Cu Particles as Dual Protection for Anticorrosion

    Get PDF
    Although two-dimensional nanosheets like graphene could be ideal atomic coatings to prevent corrosion, it is\ua0still controversial whether they are actually effective due to the\ua0presence of parasitic effects such as galvanic corrosion. Here, we\ua0reported a reduced graphene oxide (RGO) coating strategy to\ua0protect sintered Cu metal powders from corrosion by addressing\ua0the common galvanic corrosion issue of graphene. A layer of silane\ua0molecules, namely, (3-aminopropyl)triethoxysilane (APTES), is\ua0deposited between the surface of Cu particles and the graphene oxide (GO), acting as a primer to enhance adhesion and as an\ua0insulating interlayer to prevent the direct contact of the Cu with conductive RGO, mitigating the galvanic corrosion. Due to this\ua0core−shell coating, the RGO uniformly distributes in the Cu matrix after sintering, avoiding aggregation of RGO, which takes place\ua0in conventional GO-Cu composites. The dual coating of GO and silane results in bulk samples with improved anticorrosion\ua0properties, as demonstrated by galvanostatic polarization tests using Tafel analysis. Our development not only provides an efficient\ua0synthesis method to controllably coat GO on the surface of Cu but also suggests an alternative strategy to avoid the galvanic\ua0corrosion effect of graphene to improve the anticorrosion performance of metal

    Real-time imaging of Na+ reversible intercalation in "Janus" graphene stacks for battery applications

    Get PDF
    Sodium, in contrast to other metals, cannot intercalate in graphite, hindering the use of this cheap, abundant element in rechargeable batteries. Here, we report a nanometric graphite-like anode for Na+ storage, formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The asymmetric functionalization allows reversible intercalation of Na+, as monitored by operando Raman spectroelectrochemistry and visualized by imaging ellipsometry. Our Janus graphene has uniform pore size, controllable functionalization density, and few edges; it can store Na+ differently from graphite and stacked graphene. Density functional theory calculations demonstrate that Na+ preferably rests close to -NH2 group forming synergic ionic bonds to graphene, making the interaction process energetically favorable. The estimated sodium storage up to C6.9Na is comparable to graphite for standard lithium ion batteries. Given such encouraging Na+ reversible intercalation behavior, our approach provides a way to design carbon-based materials for sodium ion batteries

    Highly sensitive amperometric sensor for morphine detection based on electrochemically exfoliated graphene oxide. Application in screening tests of urine samples

    Get PDF
    Graphene oxide modified screen-printed electrodes have been tested as amperometric sensors for morphine determination. The results demonstrate that the arising of electrocatalytic processes ascribable to the graphene coating, combined with the use of a suitable cleaning procedure, allow the sensor to achieve higher sensitivity (2.61 nA ppb−1) and lower limit of detection (2.5 ppb) with respect to those reported in the literature for similar devices.Due to very low detection limit found, the device is suitable to detect the presence of morphine in urine samples after a very simple and rapid pre-treatment of the matrix, allowing the removal of interfering species affecting the voltammetric responses. Tests performed in synthetic urine samples demonstrate that the presence of the electrocatalytic coating is mandatory in resolving the peak due to morphine oxidation in respect to uric acid. The sensor proposed is, thus, suitable to detect this drug even at concentration values below the cut-off levels defined by European and American regulations. These results allow us to propose the sensor for screening tests in portable devices, to be applied in systematic controls of drug abuses, e.g. in drivers and in men at wor
    corecore