9 research outputs found

    Frequency Domain Turbo Equalization with Iterative Channel Estimation for Single Carrier MIMO Underwater Acoustic Communications

    No full text
    In this paper, we propose a low-complexity single-carrier frequency-domain iterative receiver for triply-selective underwater acoustic (UWA) fading channels, which combines frequency domain decision feedback equalization (FD-DFE) with iterative channel estimation. Due to long multipath channels, frequency domain turbo equalization has to use large block size to achieve low computational complexity and high data efficiency, but UWA channel coherence time is often much shorter than block length. We utilize pilots or soft decision symbols obtained at the previous iteration to re-estimate channel at each turbo iteration, thus achieving satisfactory performance. Although having slightly inferior bit error performance to time-domain turbo equalizers, the proposed FDE scheme reduces the complexity by three orders of magnitude, making it affordable for real-time implementation. The proposed iterative receiver has been verified through both numerical simulations and undersea experiment data collected in the Surface Processes and Acoustic Communications Experiment 2008 (SPACE08)

    Equivalence of Frequency-Domain Turbo Equalization Schemes for Single-Carrier Multiple-Input-Multiple-Output Systems

    No full text
    This paper investigates two typical frequency-domain turbo equalization (FDTE) schemes, i.e., frequency-domain equalization (FDE) with parallel interference cancelation (FDE-PIC) and FDE with frequency-domain decision feedback (FDE-FDDF) in single-carrier (SC) multiple-input-multiple-output (MIMO) systems. These two FDTE schemes are proven to be equivalent under the condition that we derived. We discover that the covariance matrix of the low-complexity FDE-PIC scheme and the correlation matrix of the FDE-FDDF scheme satisfy a unique relationship for constant-modulus modulations, and the original FDE-FDDF scheme suffers numerical instability for non-constant-modulus modulations because the estimation of the correlation matrices leads to the inversion of ill-conditioned matrices. By proposing a new estimation method of the correlation matrices, we guarantee that the non-constant-modulus FDE-FDDF scheme is numerically stable and that the relationship between these two FDTE schemes holds for both constant-modulus and non-constant-modulus modulations. Furthermore, we prove that the FDE-PIC and FDE-FDDF schemes are equivalent under this relationship. The equivalence of these two FDTE schemes is also verified through numerical simulations in terms of bit error rate (BER) at each turbo iteration and the estimation of the correlation matrices

    Frequency Domain Turbo Equalization under MMSE Criterion for Single Carrier MIMO Systems

    No full text
    In this paper, we study the design of frequency domain turbo equalization (FDTE) in single carrier (SC) multiple-input multiple-output (MIMO) systems, and prove the equivalence of two typical FDTE schemes under constant-modulus modulation. In the design of FDTE schemes, received signals and soft decision symbols obtained at the previous iteration are utilized to recover the transmitted symbols under the minimum mean squared error (MMSE) criterion. Frequency domain equalization with frequency domain decision feedback (FDE- FDDF), and frequency domain equalization with parallel interference cancellation (FDE-PIC) are presented with details. Under constant-modulus modulation, the FDE-FDDF scheme and the FDE-PIC scheme are proved to be equivalent mathematically. The equivalence of the two FDTE schemes under constant-modulus modulation has also been verified through numerical simulations

    Research Note: Genetic characterization and pathogenicity of an epidemic variant strain of avian reovirus

    No full text
    ABSTRACT: The past few years have witnessed a rapid increase in cases of viral arthritis caused by avian reovirus (ARV) in chicken farms in China, attributed to the emergence of variant strains that render traditional vaccines ineffective, leading to substantial economic losses. In this study, we successfully isolated a novel ARV strain, designated as 2023ARV-GS-SDAU-1, from chickens in a broiler flock vaccinated with an ARV vaccine in Gansu province. We performed whole-genome sequencing and assessed its pathogenicity through 2 infection routes: oral administration and intraperitoneal injection. Our analysis revealed significant variations in the σA gene, associated with the inhibition of interferon secretion, compared to known ARV strains. The highest nucleotide identity observed was below 80%. Additionally, the σC gene exhibited notable variations compared to its homologous strains within the same group. Multiple alignment of the amino acid sequences classified the 2023ARV-GS-SDAU-1 strain under genotype I. Furthermore, our pathogenicity experiments indicated that the isolated strain exhibited more severe pathogenicity when administered via intraperitoneal injection in SPF chickens. In summary, our data suggest that the 2023ARV-GS-SDAU-1 strain represents a novel variant circulating in broiler flocks in China. These findings enrich currently available genetic information on ARV strains and provide a new complete genome sequence

    Molecular characteristics and pathogenicity of a novel chicken astrovirus variant

    No full text
    Abstract It is well-established that the genetic diversity, regional prevalence, and broad host range of astroviruses significantly impact the poultry industry. In July 2022, a small-scale commercial broiler farm in China reported cases of growth retardation and a 3% mortality rate. From chickens displaying proventriculitis and pancreatitis, three chicken astroviruses (CAstV) isolates were obtained and named SDAU2022-1-3. Complete genomic sequencing and analysis revealed the unique characteristics of these isolates from known CAstV strains in ORF1a, ORF1b, and ORF2 genes, characterized by an unusually high variability. Analysis of amino acid mutations in ORF1a, ORF1b, and ORF2 indicated that the accumulation of these mutations played a pivotal role in the emergence of the variant strain. Inoculation experiments demonstrated that affected chickens exhibited liver and kidney enlargement, localized proventricular hemorrhage, and a dark reddish-brown appearance in about two-thirds of the pancreas. Histopathological examination unveiled hepatic lymphocytic infiltration, renal tubular epithelial cell swelling, along with lymphocytic proventriculitis and pancreatitis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis indicated viremia and viral shedding at 3 days post-infection (dpi). The proventriculus displayed the highest viral loads, followed by the liver, kidney, duodenum, and pancreas. Liver parameters (AST and ALT) and kidney parameters (UA and UN) demonstrated mild damage consistent with earlier findings. While the possibility of new mutations in the ORF2 gene of CAstV causing proventriculitis and pancreatitis warrants further investigation, these findings deepen our comprehension of CAstV’s pathogenicity in chickens. Additionally, they serve as valuable references for subsequent research endeavors
    corecore