134 research outputs found

    An Adaptive Compression and Communication Framework for Wireless Federated Learning

    Get PDF
    Federated learning (FL) is a distributed privacy-preserving paradigm of machine learning that enables efficient and secure model training through the collaboration of multiple clients. However, imperfect channel estimation and resource constraints of edge devices severely hinder the convergence of typical wireless FL, while the trade-off between communications and computation still lacks in-depth exploration. These factors lead to inefficient communications and hinder the full potential of FL from being unleashed. In this regard, we formulate a joint optimization problem of communications and learning in wireless networks subject to dynamic channel variations. For addressing the formulated problem, we propose an integrated adaptive nn -ary compression and resource management framework (ANC) that is capable of adjusting the selection of edge devices and compression schemes, and allocates the optimal resource blocks and transmit power to each participating device, which effectively improves the energy efficiency and scalability of FL in resource-constrained environments. Furthermore, an upper bound on the expected global convergence rate is derived in this paper to quantify the impacts of transmitted data volume and wireless propagation on the convergence of FL. Simulation results demonstrate that the proposed adaptive framework achieves much faster convergence while maintaining considerably low communication overhead

    On building a dynamic security vulnerability detection system using program monitoring technique

    Get PDF
    This thesis presents a dynamic security vulnerability detection framework that sets up an infrastructure for automatic security testing of Free and Open Source Software (FOSS) projects. It makes three contributions to the design and implementation of a dynamic vulnerability detection system. Firstly, a mathematical model called Team Edit Automata is defined and implemented for security property specification. Secondly, an automatic code instrumentation tool is designed and implemented by extending the GNU Compiler Collection (GCC). The extension facilitates seamless integration of code instrumentation into FOSS projects' existing build system. Thirdly, a dynamic vulnerability detection system is prototyped to integrate the aforementioned two techniques. Experiments with the system are elaborated to automatically build, execute, and detect vulnerabilities of FOSS projects. Overall, this research demonstrates that monitoring program with Team Edit Automata can effectively detect security property violation

    Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Efficient electrocatalysts for the oxygen reduction reaction (ORR) play a critical role in the performance of fuel cells and metal–air batteries. In this study, we report a facile synthesis of phosphorus (P)-doped porous carbon as a highly active electrocatalyst for the ORR. Phosphorus-doped porous carbon was prepared by simultaneous doping and activation of carbon with phosphoric acid (H3PO4) in the presence of Co. Both phosphorus and cobalt were found to play significant roles in improving the catalytic activity of carbon for the ORR. The as-prepared phosphorus-doped porous carbon exhibited considerable catalytic activity for the ORR as evidenced by rotating ring-disk electrode studies. At the same mass loading, the Tafel slope of phosphorus-doped porous carbon electrocatalysts is comparable to that of the commercial Pt/C catalysts (20 wt% Pt on Vulcan XC-72, Johnson Matthey) with stability superior to Pt/C in alkaline solutions

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Coherent Dynamics of Charge Carriers in {\gamma}-InSe Revealed by Ultrafast Spectroscopy

    Full text link
    For highly efficient ultrathin solar cells, layered indium selenide (InSe), a van der Waals solid, has shown a great promise. In this paper, we study the coherent dynamics of charge carriers generation in {\gamma}-InSe single crystals. We employ ultrafast transient absorption spectroscopy to examine the dynamics of hot electrons after resonant photoexcitation. To study the effect of excess kinetic energy of electrons after creating A exciton (VB1 to CB transition), we excite the sample with broadband pulses centered at 600, 650, 700 and 750 nm, respectively. We analyze the relaxation and recombination dynamics in {\gamma}-InSe by global fitting approach. Five decay associated spectra with their associated lifetimes are obtained, which have been assigned to intraband vibrational relaxation and interband recombination processes. We extract characteristic carrier thermalization times from 1 to 10 ps. To examine the coherent vibrations accompanying intraband relaxation dynamics, we analyze the kinetics by fitting to exponential functions and the obtained residuals are further processed for vibrational analysis. A few key phonon coherences are resolved and ab-initio quantum calculations reveal the nature of the associated phonons. The wavelet analysis is employed to study the time evolution of the observed coherences, which show that the low-frequency coherences last for more than 5 ps. Associated calculations reveal that the contribution of the intralayer phonon modes is the key determining factor for the scattering between free electrons and lattice. Our results provide fundamental insights into the photophysics in InSe and help to unravel their potential for high-performance optoelectronic devices

    Security Evaluation and Hardening of Free and Open Source Software (FOSS)

    Get PDF
    Recently, Free and Open Source Software (FOSS) has emerged as an alternative to Commercial-Off- The-Shelf (COTS) software. Now, FOSS is perceived as a viable long-term solution that deserves careful consideration because of its potential for significant cost savings, improved reliability, and numerous advantages over proprietary software. However, the secure integration of FOSS in IT infrastructures is very challenging and demanding. Methodologies and technical policies must be adapted to reliably compose large FOSS-based software systems. A DRDC Valcartier-Concordia University feasibility study completed in March 2004 concluded that the most promising approach for securing FOSS is to combine advanced design patterns and Aspect-Oriented Programming (AOP). Following the recommendations of this study a three years project have been conducted as a collaboration between Concordia University, DRDC Valcartier, and Bell Canada. This paper aims at presenting the main contributions of this project. It consists of a practical framework with the underlying solid semantic foundations for the security evaluation and hardening of FOSS

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields
    corecore