ON BUILDING A DYNAMIC SECURITY
VULNERABILITY DETECTION SYSTEM USING

PROGRAM MONITORING TECHNIQUE

ZHENRONG YANG

A THESIS
IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE (INFORMATION SYSTEMS SECURITY)

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

APRIL 2008

(© ZHENRONG YANG, 2008

A

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-40905-3
Our file Notre référence
ISBN: 978-0-494-40905-3

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canadg

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

On Building a Dynamic Security Vulnerability Detection System Using

Program Monitoring Technique

Zhenrong Yang

This thesis presents a dynamic security vulnerability detection framework that sets up
an infrastructure for automatic security testing of Free and Open Source Software (FOSS)
projects. It makes three contributions to the design and implementation of a dynamic vul-
nerability detection system. Firstly, a mathematical model called Team Edit Automata is
defined and implemented for security property specification. Secondly, an automatic code
instrumentation tool is designed and implemented by extending the GNU Compiler Col-
lection (GCC). The extension facilitates seamless integration of code instrumentation into
FOSS projects’ existing build system. Thirdly, a dynamic vulnerability detection system is
prototyped to integrate the aforementioned two techniques. Experiments with the system
are elaborated to automatically build, execute, and detect vulnerabilities of FOSS projects.
Overall, this research demonstrates that monitoring program with Team Edit Automata can

effectively detect security property violation.

iii

Acknowledgments

I would like to thank Dr. Mourad Debbabi, my advisor, for his continuous support and
invaluable guidance throughout my academic program. He welcomed me to the Testing
Free and Open Source Software (TFOSS) research team in late 2005. He gave me the
freedom to pursue independent ideas, while challenging me with "why, what, how" from
time to time to help me clarify my mind.

My appreciation extends to the members on my graduation committee: Dr. Joey Paquet,
and Dr. Amr Youssef. Their valuable suggestions helped enhance the content of this thesis.

My sincere thanks to my fellow researchers: Dima Al-Hadidi, Mourad Azzam, Na-
dia Belblidia, Aiman Hanna, Marc-André Laverdiere, Syrine Tlili, and Xiaochun Yang.
Thanks to Rachid Hadjidj for helping me with the GUI implementation of the security
property editor.

Finally and most importantly, my deepest appreciation to my wife Weili, my parents
back in China, and my friends all over the world. Many thanks to them for their continuous

support, understanding and love.

iv

Contents

List of Figures ix
List of Tables xi
1 Introduction 1
1.1 Motivationo e e 1

L2 Objectives o v v v i e e e 4

1.3 Contributions e e e e e 5

1.4 Organizationofthe Thesis 6

2 Detection of Security Vulnerabilities in Source Code 8
2.1 Security Vulnerabilitiesin SourceCode 8

2.2 Software Vulnerability Detection 10
2.2.1 Static Program Analysis Techniques 10

2.2.2 Dynamic Program Analysis Techniques 20

2.3 Program Monitoring and Instrumentation 26
2.3.1 Program Monitoring e 26

2.3.2 Program Instrumentation 27

Security Property Specification 32
3.1 Introduction e e e e 32
3.1.1 Motivationo e e 32
312 RelatedWork e 34
3.1.3 Security Property vs. Security Policy 36
32 TeamEditAutomata 36
3.2.1 EditAutomata 37
322 TeamAutomata v v i vttt e 39
323 TeamEditAutomataou..... 41
3.3 Implementing Team Edit Automata 47
33.1 DesignOverview oo it e e 47
3.3.2 Implementing Component Automata 49
3.3.3 Implementing Team Automata 49
34 Summary e e e e e e e e e e e e e e 51
Code Instrumentation 53
4.1 Extending GCC for Code Instrumentation 53
4.2 Introductiontothe Extension 55
4.2.1 Workflow Overview 55
422 Functionality e 56
423 UserInterface, 59
43 GCClInternals o v i i it i e e e e e 63

vi

4.3.1 GCC Architecture and Compilation Phases 63

4.3.2 GENERIC and GIMPLE Languages 65

4.4 Design and Implementation 66
44.1 Adding InstrumentationPasses 66

442 Adding Command-lineOption 70

443 Recognizing Environment Variables 71

4.4.4 Instrumentation Phase One - Scope-Wise Instrumentation 71

4.4.5 Instrumentation Phase Two - CFG-Based Instrumentation 72

4.4.6 Instrumentation Example - Supporting Suppression 75

45 Summaryo e e e e e e e e e e e e e e e e 77
5 Integrated System and Experiments 79
5.1 Imtegrated System o e 79
5.1.1 SystemOverview i e 79

5.1.2 System Configuration 80

5.1.3 Project Management, 82

5.1.4 Vulnerability Report, Viewand Fix 85

5.1.5 Security Property Specification. 86

5.1.6 System Implementation 94

5.2 Experiments with the Integrated System 95
5.2.1 ExperimentEnvironment 95

5.2.2 Experiment 1: Checking Memory Management Vulnerabilities . . . 96
5.2.3 Experiment 2: Scalability and Usability Test 100

vii

5.3 Summaryo e e e e e e 103

6 Conclusion 104
Bibliography 106
A Compiler Implementation for Instrumentation Guide Language 119
B Rough GIMPLE Grammar 122
C Source Codes Used in Experiment 1 126

C.1 Security Property Specification for Memory Management Vulnerabilities . . 126

C2

C.1.1 MemorySM.sm: State Machine for States of Program Memory . . . 126
Vulnerable C Programs Evaluated in Experiment1 128
C21 Programl. 128
C22 Program?2. e e 129
C23 Program3. e 129
C24 Program4. e e e 130
C25 ProgramS5. e e 131
C26 Program6. 131

viii

List of Figures

10

11

12

13

14

15

16

Example of Macro-Assisted Code Instrumentation 28
Collaboration Graph of Team Edit Automata Implementation Classes . . . 48
Workflow of TeamAutomata::Query () 50
Workflow of the GCC Extension for Code Instrumentation 55
GCC Architecture and CompilationPhases 64
Sample Source Code and Corresponding GIMPLE Representation 67
Pass Information for Instrumentation PhaseOne 68
Registering Code Instrumentation Passes in passes.c 69

Enabling Command-Line Option for Code Instrumentation in common .opt 70

The execute function of Instrumentation PhaseOne 73
Instrumentation of Code Suppression 76
Integrated System - Overview 80
Integrated System - Preference Dialog 81
Integrated System - Configure System Settings through File Menu 82
Integrated System - Project Management through Project Menu 82
Integrated System - Project CreationDialog 83

ix

17

18

19

20

21

22

23

24

25

26

27

Integrated System - Newly Created Project in ProjectList
Integrated System - Dialog of Project BuildingResult
Integrated System - Dialog of Project Execution Configuration
Integrated System - List of Property Violations
Integrated System - Detailed Vulnerability View
Integrated System - Source Code Editor for Bug Fixing
Integrated System - Overview of Security Property Editor
Integrated System - Specifying State Name in Security Property Editor . . .
Integrated System - Defining Transition Event in Security Property Editor .
Integrated System - Defining Transition Guard in Security Property Editor .

Integrated System - Defining Transition Actions in Security Property Editor

List of Tables

1 Static Security AnalysisTools, 12
2 Dynamic Security AnalysisTools. 20
3 Fields in the Instrumentation Guide InputFile 62
4 Instrumentation Points and Corresponding Phases 72
5 GIMPLE APIs Used for Instrumenting Suppression Code 75
6 Experiment Result of Checking Memory Management Vulnerabilities . . . 98
7 FOSS Projects Used in Scalability and Usability Experiment 101

xi

Chapter 1

Introduction

1.1 Motivation

In recent years, the development of Free and Open Source Software (FOSS) [68] has gained
much attention. More and more organizations, including government and military, have
started to consider the deployment of FOSS applications for cost-efficiency reason. In
2006, Forrester Research [4] suggested to North American and European enterprises that
"firms should consider open source options for mission-critical applications" [46]. A simi-
lar advice was given by the State of California in 2004, urging that "the state should more
extensively consider the use of open source software" [66].

Along with this trend rises the need for assuring security of the FOSS programs, be-
cause the impact of software security breach is disastrous to deploying organizations. For
example, the "Melissa" computer virus unleashed in 1999 caused more than $80 million
in damage by corrupting personal cdmputers and computer networks in business and gov-

ernment [67]. In worse scenarios, the impact not only incurs economic loss, but endangers

national security. For instance, the electronic messages from the U.S. Department of De-
fence regarding the country’s nuclear activities were intercepted by a 16-year-old hacker
in 1999 [81]. What is more, the scope of computer attacks is continuously expanding,
making security concerns more necessary. Let numbers tell the facts: In 2001 and 2002,
the Computer Emergency Response Team (CERT) [82] reported 52, 658 and 82, 094 com-
puter attack incidents respectively. In 2003, the total number of reported attacks boosted to
137, 529 cases, exceeding the sum of those reported in the previous two years!.

In order to protect software against malicious attacks, researchers attempted to incor-
porate security concerns in various phases of its life cycle. Some suggested security design
patterns and more "secure" programming languages to improve security in software’s de-
sign and implementation. Others have tried to assure software security after its deployment.
Their approaches vary from dynamic security enforcement to software security patching.
However, none of these methodologies provide enough security assurance when FOSS is
concerned. Designing and implementing security in software is certainly the best counter-
measure to malicious attacks, because it minimizes or eliminates the chance of introducing
vulnerabilities in software. Nonetheless, it does not mean much to organizations deploying
FOSS programs, because they usually do not involve in the design and implementation of
FOSS. Enforcing security properties is an active countermeasure against computer attacks.
It is especially useful after software is deployed. However, the overhead of having an en-
forcing mechanism executing in parallel with the deployed software so far prevents this

methodology from being practically useful. Releasing security patches to remedy existing

1Statistic data for 2004 and later years are not publicized from CERT web site.

vulnerabilities in software is a traditional means to enhance security in software. Yet, vul-
nerabilities might be exploited and damage made before patches are released. Hence, this
is the last means that deploying organizations can resort to.

So, what is the ideal solution for organizations to deploy FOSS while assuring its se-
curity? The answer is software security analysis. In brief, the analysis detects security
vulnerabilities in software through reasoning on its various attributes - structure, docu-
mentation, runtime behavior, etc. Ideally, vulnerabilities are detected before software is
deployed. To achieve this goal, researchers have already devised many tools. The majority
of these tools statically analyze the source code of software to detect vulnerabilities. Due
to their efficiency and improving accuracy, static security analysis tools have risen to great
prominence in the past few years. However, not all security vulnerabilities are statically
decidable [94]. In addition, some analysis problems can be solved more efficiently through
dynamic analysis than through static one. Consequently, our research is greatly motivated
by the requirement for a dynamic security analysis solution, which can complement the
weaknesses of static program analysis.

So far, no existing dynamic vulnerability detection tools provide satisfactory solution
of checking system-specific security properties in software. Many tools only detect very
specific security vulnerabilities, €.g. runtime memory errors. As for those that do perform
general purpose dynamic analysis, only few ones offer explicit support to security vul-
nerability detection. For example, the JNuke [19] tool implements a program monitoring
platform and defines a set of APIs for security analysts to interact with the monitoring sys-
tem. Yet, it is security analysts’ full responsibility to define how to check system-specific

security properties using JNuke APIs. Other tools such as EXE [28] and CCured [65] rely

on runtime assertions to detect security property violation, constraining themselves from
checking many temporal security properties.

We believe that there is a need to build a dynamic security vulnerability detection tool,
which can be easily extended to check user-defined system-specific security properties. It
facilitates the discovery of security vulnerabilities in software. When combined with an
automatic test suite generator, it can be used to automatically detect vulnerabilities, some

of which static analysis tools cannot detect accurately and/or efficiently.

1.2 Objectives

The research reported in this thesis sets out to build a dynamic security vulnerability detec-
tion system as an infrastructure for automatic or semi-automatic software security testing.
The system shall allow security analysts to specify system-specific security properties. It
shall also transparently convert the specifications to observable runtime behaviors, so that
violations of user-defined security properties can be detected when the testee program is
executed.

Accordingly, our research effort has the following objectives:
e Conduct an in-depth study of existing software security evaluation techniques.

e Define a mechanism for security property specification and design/implement a soft-

ware utility to allow security analysts to write system-specific security properties.

e Design and implement a software utility to dynamically detect violations of user-

specified security properties.

e Design and implement a software utility for automatic code instrumentation. The
utility shall be able to instrument code at various security-sensitive program points
defined by security analysts. It shall also seamlessly integrate in the existing build
system so that deploying organizations can easily use our tool to evaluate FOSS

projects.

e Experiment our detection framework on some FOSS projects to assess the viability

and usability of our approach.

1.3 Contributions

This thesis makes the following contributions to the development of an automatic and ex-

tensible solution for software security testing.

e It proposes a framework for dynamically detecting system-specific security vulnera-
bilities in software. The framework can be used jointly with an automatic test suite
generator to build automatic security testing tools. It minimizes the human effort
that is needed for the security analysis such that the analysts only need to specify
the tested security properties. The remaining operations of translating a property
specification into checkable program behaviors and detecting property violations are
transparent to the analysts. In addition, the framework is extensible such that ana-
lysts are free to specify any temporal security properties they intend to check. An

infrastructure is accordingly designed and prototyped to support this framework.

e It defines a new mathematical model called Team Edit Automata to specify security

properties. The new model is used to describe temporal security properties and to
capture the interaction among various components in testee programs. When mul-
tiple security properties define different reaction to identical program actions, the
model allows for determining which property specification should be respected. The
implementation of Team Edit Automata is prototyped as program monitors to observe

the behavior of programs when they are executed.

e It elaborates a new program instrumentation solution through extending the GNU
Compiler Collection (GCC) [8]. An extension of GCC is prototyped to allow auto-
matic code instrumentation on C source code. This solution has two attractive prop-
erties. Firstly, it can be extended to support the programming languages whose front
ends are contained in GCC. Currently, the main GCC distribution contains front ends
for C, C++, Objective C, Fortran, Java, and Ada [6]. Accordingly, the solution can
be extended to support all these languages. Secondly, it can be easily incorporated
into automatic build systems, such as GNU Make [9]. Users only need to define two
environment variables to enable the code instrumentation functionality. Such conve-
nience is valuable to dynamic analysis of FOSS projects, because many of them use

GCC as the default compiler.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. In the following chapter, we provide a

brief literature survey on software security, software security analysis, and automatic code

instrumentation techniques. In Chapter 3, we introduce Team Edit Automata as a new math-
ematical model for security property specification and present its implementation. Chapter
4 describes our solution to automatic code instrumentation - an extension to GCC compiler
that can inject code at various security-sensitive program points. Chapter 5 provides the
description of our integrated dynamic security analysis system and presents experimental

results to elaborate our experience with it. We conclude the thesis in Chapter 6.

Chapter 2

Detection of Security Vulnerabilities in

Source Code

This section summarizes the background of this thesis and the contributions made so far by
other researchers in this field. It starts by outlining various security vulnerabilities in the
source code of software, and then discusses program analysis and program instrumentation

techniques.

2.1 Security Vulnerabilities in Source Code

A security vulnerability is defined as "a defect which enables an attacker to bypass security
measures” [52]. The National Vulnerability Database of the National Institute of Standards
and Technology [12] enlists eight classes of the causes to security vulnerabilities. These

are summarized in [18] as follows:

¢ Input Validation Error (IVE), including boundary condition error and buffer overflow

8

error. This class of vulnerabilities result from program’s failure to identify incorrect

input or illegal memory access.

Access Validation Error (AVE). AVE vulnerabilities is more commonly known as

privilege escalation, where a user is given a higher access level than required.

Exceptional Condition Error Handling (ECHE). These vulnerabilities include failure

to respond to unexpected data or conditions.

Environmental Error (EE). EE vulnerabilities surface when software runs in specific,

usually harsh, execution environment.

Configuration Error (CE). These vulnerabilities are the consequence of incorrect set-

tings of the software or its execution environment.

Race Condition Error (RC). RC vulnerabilities are specific to multi-processing and
multi-threading software applications. They are the result of improper sequence or

timing of multiple processes/threads.

Design Error (DE). These vulnerabilities are the result of improper design of the

architecture of the software.

Others, i.e. vulnerabilities that do not fit in any of above categories. An example

vulnerability of this type is improper choice of weak encryption algorithm.

2.2 Software Vulnerability Detection

Researchers and software engineers have developed many vulnerability-detection tech-
niques in order to automatically evaluate and assure the security in software programs.
Depending on whether the approach involves executing the programs, these techniques fall
in two categories - static program analysis and dynamic program analysis. In this section,
we present various vulnerability-detection techniques in these two categories. Our focus is
mainly on: 1) How the tested security properties are specified in these techniques; 2) How

violation of desired security properties is detected.

2.2.1 Static Program Analysis Techniques

Static analysis is the process of evaluating software or a software component based on the
syntactic and semantic information inferred from its form, structure, content or documen-
tation without program execution [16]. It has been applied to the detection of programming
errors, violations of development standards, and other problems, which are not necessar-
ily relevant to security. Examples of traditional application of static analysis include the
identification of coding standard non-compliance, uncaught runtime exceptions, redundant
code, unreachable code, etc. The growing interest in software security assurance in the
past decades introduced new application of static analysis to vulnerability detection. For
example, there are static analysis tools [32, 49, 84] that detect potential memory leaks,
null-pointer dereference, illegal type-casting, vulnerability to SQL-injections, insecure file
accesses, etc.

A non-exhaustive list of existing static security analysis tools (extended from the survey

10

in [83]) is shown in Table 1. These tools use various static program analysis techniques
to detect security vulnerabilities in software. The following paragraphs present a brief

overview of these techniques.

Pattern Matching Technique

Our discussion starts by presenting the pattern matching technique. For some programming
languages, known vulnerable library functions exist that can result in function algorithm
attacks. For example, the library functions such as gets (), scanf (), sprintf (),
strcat (), strcpy (), and vsprintf () provided by the C programming language
are known to be exploitable with specially crafted arguments [76]. The pattern matching
technique works by searching source code for the statements that calls these functions and
checking their validity through matching them to the pre-defined patterns.

PSCAN implements this technique in order to detect format string vulnerabilities in C
programs [34]. It defines the legal and illegal patterns of calling functions of the print £ ()
and scanf () family. It then searches the source code for statements calling these func-
tions and matches them to the pre-defined patterns - those matching the illegal patterns are
reported as warnings and errors.

The pattern matching technique defines security properties and their violation condi-
tions in string patterns. However, only few security properties can be specified and checked
with string patterns. Temporal properties, which involve program actions taken at differ-
ent time during execution, cannot be correctly checked by matching patterns at a single

program point. Consequently, tools using this technique only check a limited number of

11

Name Focus Target Reference
Language
BOON buffer overflow C Wwww.Cs.berkeley.edu/~daw/boon
CodeWizard | Dangerous code constructs | C/C++ www.parasoft.com
ESC/Java2 | Common runtime errors Java kind.ucd.ie/products/
opensource/ESCJava2/
Flawfinder | Function calls, gettext C/C++ www.dwheeler.com/flawfinder
libraries
Illuma Uninitialized variables, C/C++ www.reasoning.com
memory use and pointers
1TS4 Function calls, potential C/C++ www.cigital.com/its4
buffer overflows
Klocwork General-purpose static C/C++/Javal www.klocwork.com
code analysis
LDRA General-purpose static Ada/C/C++| www.ldra.co.uk
Testbed code analysis Java/other
MC Violation of temporal C www.stanford.edu/~engler/
Checker safety properties
xgee & General-purpose static C www.stanford.edu/~engler/
Metal code analysis
MOPS Violation of temporal C www.cCs.berkeley.edu/~daw/mops
safety properties
PC-lint General-purpose static C/C++ www.gimpel.com
code analysis
PSCAN Format strings C www.striker.ottawa.on.ca/
~aland/pscan
RATS Common security flaws C/CA+/Perl | www.securitysoftware.com
Python/PHP)
SLAM General-purpose static Clother research.microsoft.com/slam/
code analysis
Splint buffer overflow, format C www.splint.org

€I1rors

Table 1: Static Security Analysis Tools

12

security vulnerabilities’.

Induction from Program Annotation

This technique specifies security properties in terms of preconditions and postconditions.
It requires the testee programs to be annotated with these properties before checking. For
each checked function, the induction works by propagating the constraints defined in pre-
condition, then verifying the accumulated constraints against the postconditions. Conflicts
found during the induction process are considered to be security property violations.

Splint, previously known as LCLint, implements this technique. It requires security an-
alysts to insert annotations as C program comments. These annotations are associated with
global variables, structure fields, function parameters and function return values. Splint
analyzes source code by resolving preconditions using postconditions of previous state-
ments [14,41].

Meta-Compilation (MC) checker [20, 93] also takes this approach. With user supplied
annotations in the source code, it conducts a "flow-sensitive, bottom-up, inter-procedural
analysis" [93] to propagate and induce the constraints defined in annotation. The analysis
process starts with intra-procedural analysis. For each function, annotation defining its
preconditions are induced and propagated on each path of the control flow graph (CFG) [17]
to create a summary of the function. An inter-procedural analysis follows by propagating

the summary from the callee to the caller at each function call site.

IEfforts were made by RATS [79] to detect Time-Of-Check-Time-Of-Use (TOCTOU) race conditions us-
ing greedy pattern matching technique. However, the solution results in frequent occurrence of false positives
according to [87].

13

The annotation induction technique has two advantages. Firstly, its induction simu-
lates program execution statically. Thus, it is able to check temporal properties. Secondly,
the checked security properties are extensible. This means that security analysts are able
to define program-specific security properties. However, the technique suffers one disad-
vantage that inserting annotation to source code may require a significant effort for the
million-line-of-code modern software. The required extensive human involvement makes

it non-scalable for testing large-scale software.

Extended Type Systems in Compilers

Another approach to detect security vulnerabilities in software relies on extended type sys-
tems that are implemented in a compiler in order to detect vulnerable flaws in source code
at compilation time. Briefly, type safety is a property attributed to some programming
languages [70].

Newer programming languages like Java and C# are designed with type safety in mind.
Programs written in such languages are immune to certain security vulnerabilities, such
as illegal memory access due to improper type casting. However, many legacy software
programs are written in non-strong-typing programming languages, such as C and C++
[70]. Some of these programming languages are still heavily used to develop new software
programs. As a consequence, researchers have made efforts to introduce extensions to the
existing type systems of these languages.

CCured [65] is a tool that implements this technique. It enforces a strong type system
to "find a simple proof of memory safety for the program" [65]. In [86], another strong

type system is proposed to statically detect type cast errors and temporal memory errors in

14

C source code.

Extending type systems for programming languages and enforcing it at compilation
time is a useful technique to check certain security properties. However, it suffers three
major drawbacks. Firstly, since the security properties (defined by the type system) are
built in the compiler, it prevents type-checking user defined security properties. Secondly,
the effort of implementing a type system in a compiler involves non-trivial effort. Lastly
and most importantly, static type checking can only detect a limited set of security proper-
ties. As studied in [91], standard type safety properties only include memory safety (pro-
grams only access memory allocated to them), control flow safety (programs only execute
valid code obeying execution sequence specified by their source code), and abstraction
preservation (only abstract data types that are allowed by programs’ interfaces are permit-
ted). Although efforts were made to write type systems to enforce access control and other
properties, the proposed technique [91] requires dynamic type checking and results in a

non-standard type system (a system that encodes Security Automata [77]).

Static Program Execution Observed by Property-derived Automata

None of the static program analysis techniques introduced so far can be used to automat-
ically check all temporal security properties. The pattern matching and extended type
checking techniques are both limited to detect specific security properties. The annota-
tion induction technique can be used to check more security properties. However, it can
hardly be an automatic vulnerability detection solution due to its requirement of tedious
program annotation.

In the xgcc analysis engine for Metal language [30], Engler et al. introduced a new

15

methodology of statically checking programs for security vulnerabilities. Their solution
laid out "a general, extensible framework ... allowing the checking of a broad range of
system-specific properties” [30].

The Metal/xgcc tool provides users with two utilities. Firstly, the Metal language is
a C-like high level language designed to specify security properties. To be specific, the
language defines key words and operators that allows users to define security properties in
finite state automata. For example, the operator (==>) defines a transition from one state
to another.

Secondly, xgcc is a fully automatic analysis engine that takes the user-defined security
properties in Metal and the source code as input, and conducts full-path-coverage analysis
of the source code. The engine parses the source code to produce a control flow graph of
the testee program. It then makes a depth-first traversal of the control flow graph to visit
each node of the graph. While traversing, it instantiates objects of finite state automata
according to the user-defined security property specifications, forces the automata to make
state transitions at tree nodes representing security-sensitive program actions, and reports
errors when the automata reach error state.

In their publication [30], Engler and his colleagues demonstrated that the Metal/xgcc
tool can automatically detect memory management and interrupt enabling/disabling flaws
in Linux kernel. Therefore, their methodology of statically executing programs with security-
sensitive actions observed by property-derived automata is a candidate solution to automat-

ically check extensible security properties.

16

Model Checking Software

In the past few years, the application of model checking techniques [35] to program security
analysis was studied by many researchers. Some well-known security analysis tools such
as MOPS [32] and Klocwork [11] use this technique. The success of Klocwork (having
won SD Times Award for three consecutive years [85] and InfoWorld 2007 Technology
of the Year Award [56]) shows the strength of this technique. The following paragraphs
introduce MOPS with more details, as Klocwork is proprietary software with little technical
information exposed.

MOPS stands for Model Checking Program for Security Properties. It has been used
to model check "an entire Linux distribution for security violations" [78] as well as one
million lines of other C source code [31]. The security properties it checks are specified in
Finite State Automata [50], which is very similar to Security Automata [77]. While secure
program actions may transit the automata from one legal state to another, insecure program
actions cause the automata to transit to an error state. Hence, MOPS focuses on detecting
violations of temporal safety properties [32].

The tool works in two phases. In the first phase, it parses C source code and transforms
the testee program into a pushdown automaton [50]. In the following phase, the model
checker intersects the pushdown automaton with finite state automata, which defines the
security property, to build a pushdown system [32]; it then traverses the pushdown system
in search of reachable error state. When such a reachable error state is detected, it reports

the security property violation with the offending path in source code.

17

Introduced as a validation technique, model checking is a competent technique in soft-
ware security analysis. Since model checkers work with abstracted models of program
states, which are usually written in checker-defined languages, the model checking engine
is independent of the programming languages of the checked source code. An existing

model checker only needs a parser to support a new programming language.

Summary of Static Program Analysis Techniques

Static program analysis for security evaluation discussed so far is appealing in practice due
to the following facts.

Firstly, it has low runtime overhead. Static source code analysis does not require pro-
gram execution. Many tools only parse and analyze the source code once to accomplish the
security evaluation. Therefore, comparing to dynamic program analysis, which requires a
program to be executed for as many times as the selected coverage criterion is satisfied, the
runtime overhead of static source code analysis is much less.

Secondly, it is sound [39], since most static program analysis reasons over all possible
runtime behaviors of the checked programs, their results describe the programs’ behaviors
regardless of their input or execution environment. Many static analysis techniques are
based on existing formal methods, e.g. type system, model checking, and tree traversal al-
gorithms. Accordingly, analysis engines that base their implementation on these methods
guarantees to satisfy certain desired coverage. For example, the xgce analysis engine sup-
porting Metal language implements the depth first tree traversal algorithm to achieve full
path coverage of the source code [30]. The model checker used by MOPS checks all the

possible sub-states of the supplied model [32]."

18

Lastly, it supports analysis of unrunnable programs. Dynamic program analysis neces-
sitates executable programs or modules. On the contrary, static analysis does not execute
the checked source code. Security analysts and software developers need not wait until a
runnable program is available to start the security evaluation. Checking unrunnable pro-
grams is not only convenient but also necessary, because it is not always possible to compile
source code into executables. For example, static or shared libraries used in the source code
may not be available to the security analysts. In other cases, the specific hardware and/or
operating system requirement of the program’s execution environment may not be easy to
set up.

The main limitation of static program analysis results from the approximation that is
performed during analysis [39]. Static program analysis, such as those implemented in
CCured, xgcc and MOPS, usually builds a model of the program state and reasons on how
the program reacts to it. In order to maintain the soundness of the analysis, it must reason
on all the possible executions of the programs. However, keeping track of all runtime
states of a program is not always feasible. For example, an integer variable in C source
code may have 232 different runtime states; hence, the total number of runtime states of a
program could be astronomical. Accordingly, static program analysis usually reasons on an
abstracted model that drops some information. Taking integer variable for example again:
static analysis such as symbolic execution [55] uses domain, denoted by the minimum and
maximum values, to replace the concrete value states of an integer. Consequently, the

analysis produces approximate and conservative results with possibly many false positives.

19

Name Focus Target Reference
Language
Dmalloc Dynamic memory C dmalloc.com/
management flaws
Eraser Race conditions Java doi.acm.org/
10.1145/265924.265927
EXE General-purpose dynamic | C www.stanford.edu/~engler/
code analysis
fuzz + Pointer and array C doi.acm.org/
ptyjig dereferencing, buffer 10.1145/96267.96279
overflow
Insure++ Runtime memory errors C/C++ www.parasoft.com/
JNuke General-purpose dynamic | Java www.schuppan.de/viktor/
code analysis publications.html
Purify Runtime memory errors C/C++/Java | www-306.1ibm.com/
C#/VB.NET | software/awdtools/purify/
Tester’s General-purpose dynamic | Java portal.acm.org/citation.cfm
Assistant code analysis ?1d=829503.830095
Valgrind Runtime memory errors C/C++/Java | valgrind.org/
Perl/Python
Fortran/Ada

Table 2: Dynamic Security Analysis Tools

2.2.2 Dynamic Program Analysis Techniques

No single fault-detection technique can address all fault-detection concerns [94]. Static
program analysis techniques, being approximate and conservative, cannot guarantee the
correctness of the program. A parallel stream of research, called dynamic program analy-
sis, addresses the problems and limitations of static program analysis. This type of analysis

involves executing the testee programs and detecting security properties violations at run-

time.

Table 2 lists some existing dynamic security analysis tools found in our survey. The

dynamic program analysis techniques used by these tools are briefly introduced in the fol-

lowing paragraphs.

20

Heuristics-based Random Testing

In [64], Miller et al. developed a simple method to detect security vulnerabilities (mainly
out-of-boundary memory access) in UNIX utility programs. Instead of doing sophisticated
static data flow analysis or runtime boundary checking, they developed a tool called Fuzz
to generate variable-length streams of random characters. These randomly generated large
string streams were given as input to the tested UNIX utilities. They found that "...the
failure rate of utilities on the commercial versions of UNIX ...tested (from Sun, IBM,
SGI, DEC, and NeXT) ranged from 15-43%" [63,64]. The program flaws mainly resulted
from illegal pointer manipulation and array dereference.

Using heuristics-based random test suite to crash the testee program is easy to imple-
ment and deploy. Miller’s work demonstrated that applying this technique can sometimes
find hidden flaws in the program. However, this technique does not guarantee soundness
of the analysis results, i.e. the randomly generated test suites cannot assure that all the vi-
olations of security properties in the program be triggered. Moreover, this technique can
only check a limited number of security properties. Take Miller’s approach for example:
Security vulnerabilities are detected only when the testee program halts or freezes upon
a specific input string. No explicit definition of property violation conditions is provided
or considered. Consequently, applying this technique alone can only detect those security

vulnerabilities that immediately result in program halt or freezing.

21

Perturbation of Program Execution Environment

The heuristics-based random testing technique presented above uses specially crafted in-
puts to crash the program in order to detect vulnerabilities. In fact, program’s execution
environment can also be perturbed to crash it. For example, a dynamically linked program
may behave normally when the shared library is available for dynamic linking. However,
if the library is missing, the program may run with partial functionality or even crash. In a
worse scenario, malicious users may replace the library with their hacked version, fooling
the program to execute unintended code fragments.

In their book [92], Whittaker and Thompson discussed in details how to exploit soft-
ware through execution environment perturbation. Particularly, they demonstrated with
examples how to break security through attacking the software dependencies, adding con-
straints on memory and disk usages, forging date sources, etc. A utility software program
called Holodeck was also developed to help security analysts crack the testee program
through modifying its execution environment.

Testing software security with perturbed execution environment and input is especially
useful when source code of the testee program is not available, because analysis can be done
solely on executables. However, it is not a suitable solution to automatic security vulnera-
bility detection, because execution environment perturbation is system specific. Addition-
ally, such perturbation requires expert knowledge of the environments and their association

to security.

22

Automatic Software Fault Injection for Security Testing

Software fault injection (SFI) is "an analysis technique that simulates faults and errors
in order to see what impact they have" [89]. The aforementioned techniques of random
testing and execution environment perturbation can both be considered to be specialized
implementation of SFI. They are common in one aspect - both inject faults external to the
program, either on its input or on its environment.

Ghosh et al. [44] came up with an automatic SFI implementation that injects faults
in source code of the program. Their methodology was based on the premise that secu-
rity vulnerabilities root in the flaws in source code. Their analysis focused on identifying
"security-fatal" flaws in source code. To achieve this goal, they used automated fault injec-
tion technique to simulate flaws in various program points and used program monitors to
detect runtime assertion failures, which reflect breach of security policies.

Particularly, they designed the Adaptive Vulnerability Analysis (AVA) algorithm [90] to
dynamically execute the program, inject anomalous events during program execution, and
determine if a security violation has occurred. The algorithm was implemented in Fault
Injection Security Tool (FIST) [44]. The tool can automatically perturb values stored in the
variables of primitive data types and simulate buffer overflows on program stack.

The automatic SFI-based security testing solution from Ghosh et al. has one major
drawback. Since the security violations are triggered by perturbed software execution at
source code level, there is no deterministic answer to whether these violations are really
exploitable. For example, a pointer may be always checked against null before passed to

the callee function. If the pointer is perturbed to a null pointer in the callee function, which

23

in turn crashes the program, we are not certain whether the crashing scenario ever occurs

in reality.

Program Monitoring

The three techniques introduced so far mainly focus on triggering security violations when
program executes. As a consequence, program halting and assertion failure only manifest
runtime errors, but do not indicate which security properties are violated during execu-
tion. Other tools listed in Table 2 use program monitoring or runtime checking to detect
security violations. These tools differ mainly in how and where the runtime monitoring is
performed.

Dmalloc (the Debug Malloc Library) [2] is a drop-in replacement for the system’s ma 1-
loc(), realloc(), calloc (), free() and other memory management routines.
These substitutional routines are implemented to keep track of the program’s dynamic
memory management actions. Such bookkeeping information is used to track memory
leak and detect out-of-boundary memory access.

Purify [74] and Insure++ [10] instrumented monitoring codes on the program to detect
runtime memory management errors. Purify maintains a state code for each byte of mem-
ory. The instrumented code "traps" each memory access the program makes to check the
state for access inconsistency, e.g. reading an uninitialized memory block. Purify imple-
ments the state code as a two-bit flag stored in a bit table. The state transition is hard-coded
to reflect the trapped memory accesses made by the program. Insure++ essentially operates
in the same way as Purify does. However, it explicitly uses finite state automata to keep

track of the security-sensitive program states.

24

JNuke is a specially crafted Java Virtual Machine (JVM) that "allows backtracking and
full access to its state" [19]. It is uséd as a sandbox to execute the testee program and
monitor its runtime behaviors. Typically, it transforms the byte code loaded from the testee
program into a reduced instruction set and does instrumentation on the transformed code.
As such, JNuke serves as an automatic program instrumentation and execution platform,
allowing various security analysis algorithms to be developed on top of it. For example,
Artho et al. implemented the Eraser [75] algorithms on JNuke to detect race conditions in

testee programs.

The success of Purify and Insure++ proves that detection of interesting security vulner-
abilities can be achieved by monitoring program execution with state transition systems.
In addition, JNuke demonstrates that extensible security violation detection system can
be implemented using program monitoring. The checkable security properties range from
traditional memory management flaws to more sophisticated multi-threading problems as

Time-Of-Check-Time-Of-Use vulnerabilities.

Summary of Dynamic Program Analysis Techniques

Dynamic program analysis has two advantages, which are complementary to static ap-
proaches. Firstly, it is accurate because security violations are triggered by concrete pro-
gram execution. Secondly, it can check certain types of security vulnerabilities (e.g. mem-
ory management and pointer arithmetics) more efficiently.

Its major drawback is the lack of soundness, because it is difficult to generate test suites
that execute all paths of a program. A preliminary solution has been separately proposed

in [28] and [45].

25

That being said, dynamic program analysis is currently applied in the following ways.

1. It can be implemented in debugging tools. Dmalloc, Purify, Insure++ listed in Table
2 fall in this category. All three tools specialize in detecting program vulnerabilities

related to memory management and pointer manipulation.

2. It can work synergically with static analysis tools. The complementary advantages
of dynamic analysis over its static counterpart have been realized in some synergic
security analysis tools. CCured is such an example. It inserts dynamic checking only

at program points where static program analysis fails to reason correctly.

3. It can work as an extensible platform for security analysis. The only application we

found during our survey is JNuke, although it is not a complete security analysis tool.

2.3 Program Monitoring and Instrumentation

2.3.1 Program Monitoring

Many dynamic program analysis tools need to observe program execution and gather infor-
mation in order to analyze the testee programs’ runtime behavior. This task can be carried
out by monitoring tools.

Program monitoring can perform at different levels. At low level, hardware monitors
extend the target system with specialized hardware architecture. For example, researchers
included counters in their microprocessor’s hardware to profile the execution of some pre-

defined events [25,71]. The advantage of hardware monitoring is its low overhead caused

26

by program monitoring and data recording. The major drawback of this approach is that
monitors can only observe low-level data at restricted types of observation points [57].
Software monitoring is a more widely used approach to observe the program’s runtime
behavior. The monitoring functionality may run in parallel with the monitored program -
for example, JNuke implements a sandbox to load, execute and monitor Java programs. It
may also be incorporated into the monitored program, as in the case Insure++. In contrast
to hardware monitors, software monitors can easily access high-level data, e.g. objects
and structures in modern programming languages. Additionally, they can be designated to
observe various program points such as predefined functions calls and access of particular

variables. The drawback of this approach is its high runtime overhead.

2.3.2 Program Instrumentation

Implementing software monitoring techniques necessitates program instrumentation. The

following paragraphs introduce various existing program instrumentation techniques.

Replacing Libraries

The simplest application to program instrumentation is realized without transforming the
program. The technique involves only replacing the library used by the program. For exam-
ple, the Dmalloc memory debugging library [2] replaces the standard C library to monitor
memory management behavior of the monitored program. The monitoring functionality is
included in Dmalloc library. Hence, the program only needs to be linked to the Dmalloc
library to enable monitoring. This approach is clean and efficient. However, it prevents
us from monitoring the program behaviors that are not associated with external libraries.

27

Therefore, it can only be used in very dedicated applications, as in the case of Dmalloc.

Preprocessor-assisted Source Code Transformation

C and C++ compilers call the preprocessor during the first phase of compilation to include
external files into the compiled source code and perform textual substitutions that are de-
fined by macros [76]. Simple code instrumentation can be implemented by utilizing the
code transformation functionality of the preprocessor.

For example, Kranzlmuller [57] implemented preprocessor-assisted code instrumenta-
tion in his parallel program debugging tool. Figure 1 shows how the original MPI_Isend
function is replaced by mon_MPI_Send in C programs. The definition of this substituting

function is inserted into the program through the include macro.

#include <monitor.h>

f#define MPI_Isend(buffer,count,datatype, \
dest, type, comm, request) \
\

mon_MPI_Send(_ LINE_ ,_ FILE_ ,MPI_ISEND, \
buffer, count,datatype, \
dest, type, comm, request)

Figure 1: Example of Macro-Assisted Code Instrumentation

Using macro-assisted source code transformation to perform code instrumentation is
easy to implement. However, only few program points can be effectively instrumented
with this approach. This is largely because that preprocessor cannot access the lexical

structure and semantics of the instrumented program.

28

Parser-assisted Source Code Transformation

A parser is also a part of compiler. It builds the parse tree and abstract syntax tree of the
program after source code is preprocessed. Therefore, it can access more information than
the preprocessor can. The information includes the full syntactic structure and optionally
the semantics of the program (depending on whether semantic analysis is performed).

Parser-assisted source code transformation can be very powerful. For example, the
Puma library from AspectC++ project [13] can do sophisticated source code transformation
at various program points. In fact, all the program weaving capabilities promised by the
AspectC++ language are realized by the Puma library. An example implementation of
parse-assisted code instrumentation is also available in the SUIF project from Stanford
University [47].

This approach suffers one disadvantage that is universal to all program instrumentation
approaches that rely on source-to-source code transformation. Generating instrumented
source code requires extra file reading and writing, which increases compilation time. Such
overhead is not tolerable by debugging tools and dynamic program analysis tools, which

perform compilation fairly frequently.

Binary Wrapping of Object Code

The idea behind this approach is similar to macro-assisted code instrumentation. Instead
of substituting program text, this approach replaces the bytes of the static object code of
the instrumented program. Examples of binary instrumentation tools are ATOM [80] and

JiTI [73].

29

The obvious advantage of this approach is that it requires no source code. However,
its capability is restricted due to lack of the program’s syntactic and semantic information.

Moreover, it is dependent on the format of the static object code.

Instrumentation with AOP Weavers

Aspect Oriented Programming (AOP) is a new programming paradigm proposed for better
modularized program implementation. In brief, AOP langauge allows developers to group-
select a collection of points in the source code and to define what behaviors they intend to
insert at these points. A software utility called weaver parses the language and transforms
the program according to developers requirements. In [62], Mahrenholz et al. demonstrated
that AspectC++ (an AOP extension for C++) can be used to do program instrumentation
for debugging and monitoring.

As part of the research effort of this thesis, [24] studied the applicability of AOP as a
code instrumentation tool for software security analysis. While AOP languages provide a
very user-friendly means to specify code transformation requirements, they lack the syntax
and weaver implementation to address low-level program points, e.g. variable access. At
higher-level, program points concerning the data flow and control flow of the program are

not fully implemented either.

Compiler-aided Code Instrumentation

Compiler-aided code instrumentation is actually an enhanced version of the parser-assisted
approach. Instead of generating transformed source code from the modified parse tree or

abstract syntax tree, it passes the tree to compiler’s backend and immediately generates the

30

object code. The only overhead of such code instrumentation is the transformation of the
program’s intermediate representation. Hence, it is both a powerful and efficient way to

perform code instrumentation. An example implementation is described in [29].

2.4 Summary

This chapter presents the state-of-the-art practices related to the research of this thesis.

We introduced different types of security vulnerabilities in source code. Their impact
and persistence in software programs motivated researchers and security analysts to device
more effective countermeasures.

We provided a survey of static and dynamic program analysis techniques for security
evaluation. We discussed the pros and cons of each approach. Moreover, we paid special
attention to how security properties are specified in these techniques.

Finally, we presented several approaches to program monitoring and instrumentation,
because the survey of existing dynamic analysis techniques indicates that program moni-
toring is an effective and scientific way to detect security vulnerabilities in programs. The
study of existing program instrumentation techniques concludes that compiler-aided code

instrumentation is a proper option to inject monitoring functionality in program.

31

Chapter 3

Security Property Specification

This chapter introduces a new mathematical model called Team Edit Automata, which cap-
tures the behavior of our program monitors for dynamic program analysis. The implemen-
tation of this model allows security analysts to specify security properties in a program-
matical manner. Additionally, it constitutes the violation detection engine of the program
monitors. We start with a brief introduction to the background and motivation of this new
model in Section 3.1. We then present the definition and implementation in Section 3.2 and

3.3 respectively.

3.1 Introduction

3.1.1 Motivation

When concerning security evaluation of a software program, we must first ask three ques-

tions.

32

1. What are the security properties we intend to evaluate?

2. How can we formally specify these properties to guide our evaluation?

3. How can we detect flaws in the software program that violate the security property

specification?

While the first question is somewhat program-specific, the last two can generally apply
to security evaluation of any software programs.

We find analogous questions being asked and answered in the field of security enforce-
ment, a sibling discipline of security evaluation. In that field, a ubiquitous technique is
to monitor programs at execution and take remedial action when the programs violate a
security policy. Researchers have introduced a variety of mathematical models [59,77] of
security enforcing program monitors and made significant efforts on defining the class of
enforceable security policies by these monitors. Their models differ mainly in the moni-
tors’ remedial capabilities, including halting program execution, suppressing and inserting
program actions. Edit automata [59], which combines all these capabilities, is proven to
be able to enforce all security properties. Therefore, we consider Edit Automata to be a
candidate model for formal specification of security properties.

However, the Edit Automata model is insufficient for the security evaluation purpose in
two aspects. Firstly, the model is designed to enforce individual security properties. It does
not explicitly define the enforcement action when different remedial actions are suggested
by multiple program monitors, which concern the same program action. As for security
evaluation, we require deterministic error condition to be defined based on all the security
properties to be evaluated in a software program. This suggests the idea of considering and

33

synthesizing the output of these automata.

Secondly, the high interactiveness in modern software systems suggests that the mon-
itoring automata‘be interactive as well. For example, dynamic memory and pointers are
two tightly-paired components in C/C++ programs - deallocation of a memory block on
the heap instantly invalidating all pointers referencing to it. Behind this example lies a star
topology, where a dynamic memory block correlates to multiple referencing pointers. We
want to generalize the interactiveness so that any two sets of monitors may interact, similar
to the static program execution algorithm implemented in MeTaL/xgcc [30].

Both aspects of the aforementioned insufficiency can be addressed by combining the

correlative individual Edit Automata into a single unit and allowing them to interact.

3.1.2 Related Work

Using finite state machines to describe security properties and using hierarchically struc-
tured automata to model the interaction among software components are both active re-
search threads when considered in their own disciplines.

Monitoring software execution and taking remedial reactions to the violation of secu-
rity properties is a ubiquitous technique used by researchers in the field of security enforce-
ment. Schneider [77] introduced Security Automata to halt program execution when the
programs’ behavior violates security properties. He also characterized the class of secu-
rity properties that can be enforced by Security Automata to be safety properties. Kim,

Viswanathan and others [53, 88] explicitly added computability constraints on the safety

34

properties being enforced. Ligatti, Bauer, and Walker [22, 59] extends the enforcing capa-
bility of the program monitors by introducing Edit Automata as a sequence transformer. Re-
cently, Talhi, Tawbi and Debbabi [27] introduced Bounded Security Automata and Bounded
Edit Automata by adopting more precise abstractions and discussed their applicability to
limited-memory systems. Along with the theoretical studies, various security monitoring
systems [21,22, 36, 38,40, 51, 54, 88] have been implemented to allow arbitrary code exe-
cution upon possible violation of security properties.

In other disciplines such as the studies of distributed and concurrent systems, group-
wares, and component-based systems, researchers use automata theory to construct formal
models to specify the interaction within the systems. Lynch and Tuttle [60, 61] defined
Input/Output Automata to model distributed and concurrent systems with different input,
output and internal actions. Alfaro and Thomas [33] introduced Interface Automata for the
specification and validation of systems communicating through their interfaces. Ellis and
others [23,37] introduced Team Automata as a mathematical model of the groupware sys-
tems. In particular, their model is defined as a hierarchical structure composed of multiple
component automata responding to shared actions. Brim, Cerna and others [26] derived
their Component-Interaction Automata from the Team Automata model in order to ver-
ify the behavior of component-based systems. Their model provides specification of how
component automata are bound together and how the communication among components

is carried out.

35

3.1.3 Security Property vs. Security Policy

To sum up our introduction, we differentiate security property and security policy in the
following paragraphs. Their difference explains why the scope of this thesis is restricted to
dynamically detecting violations of security properties only.

A security policy is a predicate P on sets of executions. A set of executions of a
particular program satisfy a policy P if and only if every execution in the set satisfies the
predicate P. Formally, “X satisfies policy P”if and only if Ve € X : P(g) where X denotes
a set of execution and € denotes a single execution.

A security property is a predicate P defined exclusively on individual executions of a
program. An execution of a particular program satisfies é property P if and only if every
action in the execution satisfies the predicate P. Formally, “e satisfies property P’ if and
only if Vo € € : 15(0) where € denotes a single execution and o denotes a sequence of
actions.

It is clear that security properties only apply to individual execution while security poli-
cies are cross-execution concerns. As program monitors only see individual executions of
the programs, they can only model security properties without further extension. Therefore,

in this thesis, we exclusively focus on testing security properties.

3.2 Team Edit Automata

In this section, we give the formal definition of Team Edit Automata. We start by presenting
the definition of Edit Automata and discuss its enforcement power when single security

property is concerned. We then present the Team Automata model. The model and some of

36

its variants demonstrate possible formalization of component-interactive systems. Finally,

we present the definition of Team Edit Automata and explain the semantics of this model.

3.2.1 Edit Automata

Prior to the introduction of Edit Automata, Schuneider [77] presented Security Automata.
He uses Security Automata as sequence recognizers, such that they only emit sequences
of actions that are in conformity with the enforced security properties. Upon receiving
sequences of actions that violate the enforced security properties, the automata halt the
program execution. According to his proof, Security Automata can enforce all safety prop-
erties (“nothing bad ever happens” [58]) and a limited set of security properties.

Ligatti, Bauer, and Walker [59] defined Edit Automata such that they can enforce all
security properties. They view the program monitors as a sequence rewriter. Hence, rather
than simply halting the program execution, their program monitors can suppress and insert
actions to the programs. They introduced Edit Automata to model their program monitors
and reasoned that their model can enforce all security properties.

An edit automaton E is a triple (Q, go, ¢) defined with respect to some system with

action set A, where:

e () is a finite or countably infinite set of states

® ¢, is the initial state

® 0:QxA— Qx(AU{}) is atransition function

The semantics of ¢ is defined to be:

37

(g,0) — &(d,)

e ifoc=a;0 and §(q,a) = (¢,a’) then (q,0) LE (¢',o) (E-Insertion)

o ifo=a;0’andd(q,a) =(¢,-) then(q,0) —g (¢',0’) (E-Suppression)

In above definition, a and a’ denote individual actions while the symbol "-" denotes
empty sequence of program actions. ¢ and ¢’ denote sequences of actions. The symbol
":" denotes concatenation of actions, e.g. a; ¢’ means an action a followed by a sequences
of actions (represented by ¢’). The action above the arrowed line (—) represents the one
emitted by the automata.

An edit automaton can temporarily suppress a sequence of actions that may violate
the security property it monitors. Hence, instead of allowing potentially illegal actions to
take effect, the edit automaton records the sequence internally and waits for the action that
can guarantee the sequence to be legal. If such action arrives, the automaton will emit all
previously suppressed actions and continue to process the upcoming actions. This way, it
reserves the semantics of the program actions and enforces the security property as well. If
the action is absent, the automaton halts the program execution (by suppressing all future
actions).

While Edit Automata are defined to model the program monitors for security enforce-
ment, we consider them to be a mathematical model for describing security properties. An
edit automaton defines all action sequences that satisfy the security property monitored by
its corresponding program monitor. It can also recognize all the actions sequences that vio-
late the security property. Hence, it divides all the action sequences of a software program

into two partition classes - one includes all legal sequences and the other all illegal ones.

38

We can take advantage of this feature of Edit Automata to specify security properties for
testing purposes.

In [22], Ligatti, Bauer, and Walker noticed the problem when multiple security prop-
erties are concerned of identical actions. Intuitively, there must be a way to tell which
enforcement reaction defined by which program monitor should take effect in such sce-
narios. They addressed the problem by including “Policy Combinators” in their empirical
implementation called Polymer. We consider their approach to be very suggestive. A gen-
eral mathematical model for security property specification should be able to describe such

scenarios. Hence, we need an architecture that can group multiple automata together.

3.2.2 Team Automata

Team automata [37] was introduced by Ellis as a mathematical model of groupware sys-
tems. The model defines a way where multiple collaborative component automata can be
interconnected to form a team and where multiple teams can be interconnected to form a
larger-scaled architecture.

A component automata C is defined as a 4-tuple (Q), Qo, A(C), 6), where:

e () is a nonempty set of states;
e (o is a nonempty set of initial states such that @y C @);

e A(C) is an ordered triple consisting of three pairwise disjoint sets of actions
(in(A), out(A),int(A)), where in(A) defines input actions, out(A) defines output

actions, and int(A) defines internal actions that are not externally observable;

39

e §:Q x A(C) — @ is a state transition function.

The component automata are similar to ordinary automata except that their actions are
classified into three categories - input actions, output actions, and internal actions. The
categorization of actions can be viewed as an extra attribute of the actions. The team relies
on this attribute to connect multiple automata. For example, two automata are connected if
the output action from one component automaton is the input action to the other.

Given a set of component automata {C;}, a team automata 7 is a four-tuple

(QT,QT, A(T), sT), where:
o QT =TI(Q;), where II denotes the Cartesian products, is a nonempty set of states;

e QT =T1(Q,;) is a nonempty set of initial states;

e A(T) is an action signature that defines on each input action which component au-

tomata should simultaneously execute it and which should keep dormant;

6T : QT x A(T) — QT is a transition function defined on all possible input actions

to the team.

The team automata are defined, through their action signature A(T'), to be able to find
all the component automata, which can execute an action from their current state and re-
quire them to execute it simultaneously. Accordingly, the team allows a single action to
be broadcasted to multiple components. This behavior is very similar to what we intend to

include in our model.

40

3.2.3 Team Edit Automata

The Team Edit Automata model combines the powerful enforcing capabilities of Edit Au-
tomata into the component-interactive architectural model defined by Team Automata. The
resulting model is a team composed of one or multiple component edit automata. A team
edit automaton connects its component automata through action signatures - definitions

that designate the source and destination of actions.

Notation

The notation used in the following definitions is similar to that in [59].

We consider a software program as a set of program executions .A. We use the notations
A* and X to respectively denote the set of all sequences of actions of a program execution
and an arbitrary set of executions such that 3 C A*.

We use ¢ to represent a single execution and the symbol “-” to denote the empty se-
quence of program actions. We use ¢ and 7 to define single sequences of actions and
we use a and a’ to denote single program action. We use the notation o; ¢’ to define the
concatenation of two sequences of actions ¢ and ¢”.

The arrowed line (—) denotes a state transition. If any symbols appear above it, they

represent the actions emitted by the automata.

Component edit automata

We use the component edit automata to model program monitors for individual security
properties. Each automaton specifies one security property of the program.

A component edit automata C is a S-tuple (Q, I, A, G, §), where:

41

e () is a nonempty finite or countably infinite set of automaton states;

e [is a nonempty initial state set such that I C Q;

e A is a set of actions;

e (is a set of guard conditions;

d is a partial function A x Q X G — @ x A U {-} for transition relation.

The symbol ¢ specifies the transition function for the automaton. Based on the au-
tomaton’s current state, input action and guide condition, the function indicates whether
the automaton should suppress the input action, insert action(s) in the output, or report er-
rors. Transitions not defined by § are considered to be errors. In such cases, the component
automaton reports security violations to the team and remains in its current state.

It is worth mentioning that our component edit automata augment Edit Automata with
a guard condition on the transition function. Without guard conditions, the state transition
of Edit Automata is based only on the temporal properties of the input actions, constraining
the expressiveness this model. On the contrary, our component edit automata can check
context information before making state transitions. Experiment 1 described in Chapter 5
demonstrates the usefulness of guard condition in actual application.

The operational semantics of component edit automata is specified as follows:

(¢,0,9) — (d,0')

e ifo=a;0"and d(q,a,9) =(¢',a’) then(g,0) <, (¢’,0) (insert)
o ifo=a;0'and 6(q,a,9) =(¢',") then(q,0) — (¢’,0') (suppress)

o ifo=0'5a;0"and 6(q,a,9) =0 then (q,0) e, (gq,0") (report flaw)

42

Accordingly, a component edit automata can insert more action(s), suppress the input
action, and report possible flaws in the program.

The semantics of the “insert” and “suppress” operations is similar to the one defined in
Edit Automata. An example application of the “suppress” operation for security testing is to
suppress the second f ree action when double-freeing is detected. Since we are certain that
such suppression prevents the testee program from crashing without perturbing its runtime
states, the suppression allows us to detect subsequent vulnerabilities on the same execution
path, instead of halting it.

The “report flaw” operation does not confirm but reports a possible flaw. Upon an
input action “a”, for which the transition function J is not defined, the automaton outputs
a special action “r”, standing for report-flaw, followed by all previous input actions. The
output action “r” signals the team of a potential flaw in the program. The appended history
of previous actions provides the context of the detected property violation.

The final judgment of the detection of flaws is delegated to the team, which can collect

outputs from all correlated component automata (those respond to the same input action)

and make judgments based on its own specification.

Team Edit Automata

A Team Edit Automata is composed of one or more component edit automata. It groups
correlative security properties (as component automata) in a team, coordinates the interac-
tion among these components and ensures that the team responds to program inputs with
explicitly defined outputs.

In our model, we use action signatures to describe the shared actions among component

43

edit automata.
An action signature a7 is a 3-tuple ({C;} U {—}, a, {Ci}) for j, k < i where {C;} and
{Cy} are sets of component edit automata and a represents an action.

An action signature has the following two types:

e Pipe: ({C;},a,{C\}) defines an output action ¢ from any component edit automata

in set {C;} to be passed as input to all component edit automata in set {Cy };

e Input: (—, a, {Ci}) defines an action a sent to the team automata as input and rec-

ognized by all the component edit automata in set {C}.

Note that the action a is synchronously processed by all component automata in the set.
This is why we call it a shared action. Semantically, the Pipe and Input action signatures
combine individual component edit automata into a group. In our model, two individual
component automata are in the same team either when they share a set of non-empty iden-
tical input actions (defined by an Input action signature), or when the output action of one
component automaton is the input action of the other (defined by a Pipe action signature).

Input action signature correlates security properties (modeled by their corresponding
component edit automata) that share concerns of a common set of program actions. For
example, a program may have one file access policy and one user authentication policy
implemented. The file access policy forbids any user except the system administrator from
sending packets from a socket connection once s/he opens some sensitive local files. On
the other hand, the user authentication policy allows any successfully authenticated users
to send any packets of information to the network. In this case, a user trying to send some
packets of information to the network is concerned by both policies. Our model correlates

44

these two policies into one team and provides additional specification with regard to how
to respond to outputs from these two component edit automata. Hence, the specification
of the expected implementation of the security properties in a software program can be
accurately defined.

Pipe action signature correlates security automata whose concerned program actions
may affect each other’s state(s). In the same program as in above example, users may suc-
cessfully authenticate themselves as the system administrator, open the sensitive local file,
then start sending it over the network. To evaluate whether the program correctly imple-
ments the file access policy to deal with this scenario, we can either let the corresponding
component edit automata to query the users’ authentication information then judge the cor-
rectness of the implementation. This is feasible but ad-hoc in nature. Or, we can make a
production of the component edit automata of the two policies and use the new produc-
tion automata to monitor the implementation of both security properties. This is feasible
as well but does not scale well. In our model, the interaction among the component edit
automata is defined by allowing the output of some automata to be piped as input to oth-
ers. Hence, no automata production is required and the model can generally apply to any
software programs.

We now give the definition of Team Edit Automata as follows.

A Team Edit Automaton T is a 3-tuple <{Ci}, AT, 6T), where:

e {C;} (¢ € N) is a nonempty set of component edit automata. The Cartesian product
of their states and initial states constitutes the states and initial states of the team

respectively;

45

o AT is a set of action signatures {a] } (j € N);

o 07 is a partial function {A x {Ax}} — {A;} (k,1 < i) for flaw judgment and output

transformation.

The function §7 determines the team’s observable outputs. It works in two ways:

Firstly, it defines what output the team should emit if multiple component edit automata
emit different outputs upon an identical input action. In this case, 67 is particularly defined
as a partial function {A x {Ax}} — {Ai} (k,! < iand r ¢ {A;}). By explicitly defining
67 for such conditions, testing engineers are able to specify the expected security property
implementation more accurately. This is also a formalization of the “Policy Combinators”
implemented in Polymer [22], which we discussed in section 3.2.1.

Secondly, we mentioned that component edit automata only report flaws they detect and
the judgment of whether the flaws should be made observable is delegated to the team. §7
is used to describe how the team should make such judgment. In this case, §7is particularly
defined as a partial function {A x {r} U {Ax}} — {A} (k,! < i) where r is the report-
flaw output action from component automata. Therefore, if an action 7 is output by multiple
component automata upon an input action a in A, 7 defines the team’s behavior of whether
it should report the flaw(s) or not. Note that given the input action a, we are able to find all

correlative component automata by looking in the definition of action signatures.

46

3.3 Implementing Team Edit Automata

3.3.1 Design Overview

Our implementation of Team Edit Automata is composed of a hierarchy of C++ classes.

Particularly, four classes are defined as following;:

Class Event provides an abstraction of program actions. It is supposed to be inher-

ited by concrete subclasses in real application. Both team automata and component

automata are triggered by Event for state transition.

e Abstract class ComponentAutomata corresponds to the Component Edit Automata
in our model. It must be inherited by concrete subclasses in real application to rep-

resent various individual security properties.

e Class TeamAutomata implements various team management and collaboration
functionalities. It allows components of the same team to interact with each other

and guarantees to generate a team-wise response upon any program action.

e Abstract class SuggestionSolver implements the strategy design pattern [15].
In real applications, security analysts can implement system-specific suggestion solver
to solve conflicts among security properties. We included a simple default suggestion

solver in our implementation that always respects suggestions in a particular priority.

Figure 2 shows the collaboration graph of three main classes in our implementation.

47

SuggestionSolver

+ Sclvel)

A

LpSuggSoclver
!

TeamAutomata

-_components
-_events
-_pSuggsolver

+ TeamAutomatal)

+ ~TeamAutomatal)

+ RegisterComponent(}
+ UnregisterComponent()
+ AddInternalEvent()

+ Queryl(]

A

tteam

Figure 2: Collaboration Graph of Team Edit Automata Implementation Classes

48

3.3.2 Implementing Component Automata

We implemented component edit automata as an abstract class ComponentAutomata.
Figure 2 shows its public interfaces.

Each ComponentAutomata object is associated with a team through the private
member of _team. It can switch team through the RegisterToTeam() and Unreg-
isterToTeam() interfaces.

We separated the component’s state transition into two phases, namely QueryEvent ()
and ExecuteEvent (). In the first phase, i.e. QueryEvent (), a ComponentAu-
tomata object responds to the input action with a suggestion and does not perform state
transition. In the second phase, it makes the transition responding to the input action. The
idea behind this design decision will be clear when we introduce the workflow of the Tea—
mAutomata class.

We intentionally separated the state transition functionality from ComponentAu-
tomata, so that any implementation of a finite state machine can be incorporated into
our class hierarchy. In our integrated system (see Chapter 5.1), we used State Machine
Compiler [72] to automatically generate C++ implementation of finite state machines and

composed them in ComponentAutomata subclasses.

3.3.3 Implementing Team Automata

Class TeamAutomata implements the Team Edit Automata. As shown in Figure 2, a
TeamAutomata object manages multiple ComponentAutomata objects through the

RegisterComponent () and UnregisterComponent () interfaces.

49

The class also manages an event queue (i.e. _events) to store all the unprocessed
events. Internal events sent between components can be enqueued through the AddIn-
ternalEvent () interface.

The task of solving conflicting suggestions is delegated to a SuggestionSolver
object. This way, security analysts are free to define any conflict solving algorithm to be

used by the team.

Solve
Suggestions

/ Team-wise /

[,_ St_n_g__gastim |

3
Advise all components
to commit transition
based on the ta m-wis

Emit team-wise
suggestion

estian Ctﬂ th :
queued event

k4
/ Team-wise /f

lecion of 7
uggestions
|

Figure 3: Workflow of TeamAutomata: :Query ()

Finally and most importantly, Query () is a team’s public interface to the monitored

program. During execution, the instrumented monitoring code frequently calls this function

50

for team-wise suggestions. Figure 3 shows the workflow of this function. Upon receiving
an input action, the function broadcasts it to all the component automata and collect their
suggestions. Some component automata may send internal actions to other components.
Thus, the function keeps collecting suggestions until all the internal actions are broad-
casted. It then calls the SuggestionSolver object to produce a team-wise suggestion
based on all the collected suggestions from the components. This suggestion is emitted as

output action after being broadcasted to all component automata to commit state transition.

3.4 Summary

In this chapter, we introduced Team Edit Automata as a mathematical model to capture the
behavior of program monitors that check the security properties.

The research effort was motivated by the requirement of allowing user-defined secu-
rity properties to be dynamically checked in a universal and scientific way. Team Edit
Automata was introduced to specify all temporal security properties. It also provides ad-
ditional definitions to: 1) model interactions between software components; 2) improve
the expressiveness of the model by adding guard conditions to state transitions; 3) allow
multiple security properties to be specified for a program without conflicts.

We presented the implementation of Team Edit Automata as a hierarchy of C++ classes.
These classes provide a framework for programmatically writing security properties. In real
applications, we provided graphic interface to facilitate property specification so that secu-
rity analysts need not to code the properties from scratch rather draw property specifications

with a visual aid. The introduction of this graphic interface (called Security Property Editor

51

in our integrated system) will be presented in Section 5.1.

52

Chapter 4

Code Instrumentation

The following chapter depicts the implementation of a GCC extension for code instrumen-
tation. The text starts by explaining why we choose this approach. Section 4.2 introduces
the functionality and user interface of the extension and Section 4.4 details its implementa-

tion.

4.1 Extending GCC for Code Instrumentation

We chose the approach of compiler-aided code instrumentation for the following reasons:

e Compiler knows the lexical structure and the semantics of the program being instru-
mented. It builds and analyzes the Abstract Syntax Tree (AST) and the control flow
graph of a program. Therefore, we can precisely select the program point for code

instrumentation.

e The existing compiler optimization can apply to the instrumented code, resulting in

53

efficient executable file. Optimization of the instrumented program is crucial to dy-
namic analysis. For a sounder analysis result, the instrumented program is usually
executed as many times as needed to explore different execution paths of the pro-

gram. Therefore, a better optimized program can reduce the analysis time.

e The program monitoring functionality is compiled as part of the instrumented pro-

gram, also resulting in faster executables.
The reasons to why we chose to extend GCC instead of other compilers are listed below:

e GCC is the default compiler for many FOSS projects. As our goal is to evaluate
security in FOSS projects, extending GCC facilitates easier integration to the build
system of these projects. Code instrumentation can be performed on FOSS projects

without modifying their Makefiles.

e GCC is a well developed and tested multi-platform compiler. It can cross compile

software program for various hardware chips and operating systems.

e GCC is a collection of compilers for many programming languages, including C,
C++, Objective C, Fortran, Java, Ada, and so on. The compiler uses a universal
intermediate language called GIMPLE to represent programs written in all these lan-
guages. Therefore, we chose to perform code instrumentation at the GIMPLE level
so that future extensions can be added to support code instrumentation for all these

languages.

54

4.2 Introduction to the Extension

We have implemented an extension to the GCC compiler for C programming language.
Our implementation is based on the GCC core distribution version 4.2.0 [5]. In addition to
all the functionalities of the original GCC compiler, the extension can do automatic code
instrumentation. The instrumentation process, i.e. where and what to instrument, is guided
by an input file written in a specific language. So far, the extension can properly work on

both UNIX and Linux systems.

4.2.1 Workflow Overview

Source Code /L

Static Library of /
to-be-instrumented
routines

/
[,
/ "ovids /L
/

/

/

Y

GCC extension Instrumented
Executable

(a) Instrumentation using static library

Shared Library of
Source Code /L_ to-be-lnst‘rumented
routines

dynamic IinkingJ

nstrument
GCC extension Instrumented
Executable

Shared Library of
to-be-instrumented

routines /

Instrumentation
Guide

(b) Instrumentation using shared library

Y

Figure 4: Workflow of the GCC Extension for Code Instrumentation

55

Figure 4 depicts an overview of the workflow of the extended GCC compiler. Gener-
ally, the compiler extension takes three inputs: the source code, an input file to guide the
instrumentation process (mentioned as instrumentation guide in the following text when
there is no ambiguity), and a library containing the subroutines to be instrumented in the
program (mentioned as instrumentation library when there is no ambiguity). If only compi-
lation is required, the extension outputs an .o object file. Otherwise, it outputs an executable
file. In both cases, the output is instrumented with a behavior that is implemented in the
instrumentation library.

Figure 4 also shows that our extension can work with both static and shared instrumen-
tation libraries. This provides security analysts with the flexibility of choosing different
linking options. Moreover, linking with shared libraries improves the usability of our ex-
tension. As we mentioned in Chapter 3, our program monitors are implemented in C++.
Consequently, we need to wrap the program monitoring routines with C interfaces and dy-
namically link them in the instrumented program. The dynamic linking capability of our

extension immediately solves this problem.

4.2.2 Functionality

The functionalities we chose to implement in our GCC extension are mainly oriented by the
requirement of injecting monitors in the programs for the purpose of dynamic vulnerability
detection. On the one hand, we carefully selected a set of program points where code can be
instrumented. The chosen points are all considered to be security sensitive in C programs.

On the other hand, the instrumented code can change the program’s original control flow

56

at certain program point.

Program Points for Instrumentation

Our extension can instrument code at any of the following points in a C program:

¢ Function call:

C programs perform various tasks through calling functions (also known as sub-
routines). Therefore, instrumenting code at function calls is crucial to check many
security properties in programs. For example, the double freeing vulnerability in C
programs can be detected by monitoring calls of malloc family functions and the
free function.

In order to supply dynamic analysis with more information, we allow security ana-
lysts to optionally expose the arguments that are passed to a function call. Addition-
ally, if the instrumentation is done after the call, the analysts can expose its returned

value as well.

¢ Function exit:
If any program monitor is instantiated to track the intraprocedual context of a func-
tion, codes can be instrumented before it exits. Usually, the instrumented code sum-
marizes the intraprocedual analysis result and releases the monitor at this type of

program points.

e Variable declaration, read and write:
These program points are included in our selection because many security vulnera-

bilities are the result of invalid use of variables. In particular, some low-level security

57

vulnerabilities such as array out-of-boundary access have to be detected at variable
level [24].

Variables are identified by their names and locations in the source code (i.e. source
file name and line number). Our current implementation is able to identify all types
of variables in C programs, including global variables, static variables, and automatic

variables (also known as local variables).

End of a variable’s binding scope:

At this special type of program points, instrumentation code can release the program
monitors instantiated to trace the states of variables. As for automatic variables,
it corresponds to when the program execution is about to leave the scope where the
variable is declared. In the case of global variables and static variables, it corresponds

to when the program is about to exit.

Pointer dereference:

We paid special attention to the use of pointers in C programs, because misuse of
pointers can result in many security vulnerabilities. With this type of program points
included, security analysts can monitor any specific pointer dereference action in the

program.

Suppression, Insertion, and Halt

As mentioned in Chapter 3, we proposed a model of program monitors, which can suppress

and insert actions in the monitored programs as well as halt them. Accordingly, we imple-

mented our GCC extension such that the instrumented code can take all these proposed

58

actions.

e Suppress actions:
If monitoring code is instrumented before a security-sensitive statement, the program
monitor may suppress the statement, depending on the security property it checks.

More details on the implementation of this feature is presented in Section 4.4.

e Insert actions:
Inserted program actions are included in the shared or static library that contains
program monitoring and analysis routines. Security analysts are free to add any

desired behavior in the library and have them linked into the instrumented program.

e Halt program:
Halting the instrumented program is implemented through instrumenting a call to

exit in the program.

4.2.3 User Interface
Invocation of the Instrumentation Extension

There are two ways by which security analysts can enable our GCC extension to do code

instrumentation:

e Using command line options:
Our extension added a particular command line option to the GCC compiler. To en-
able the extension to instrument code, security analysts include the following option

when invoking our extended version of GCC at command line:

59

-ftree-security-instrument=instrumentation_guide_input_file
"-ftree-security-instrument" advises our GCC extension to enable the in-
strumentation functionality. "instrumentation_guide_input_file" is the in-
put file of instrumentation guide.

In addition to the above option, security analysts need to add the linking options to
specify the library that contains program monitoring routines. This is done through
GCC’s "-1" and "-L" options.
Below is an example of a complete command that performs the invocation:
gcc -L\absolute\dir\to\SecInstrlib -l1lSecInstrLib
—ftree—-security-instrument=instrumentation_guide_input_file

source_file.c

Defining environment variables:

Using command line options to enable code instrumentation is probably a convenient
means to compile a separate source file or write a Makefile [9] of a software project
from scratch. As for FOSS projects, whose Makefiles are either automatically gen-
erated by autoconf utility [1] or distributed with source code, it still requires some
human effort to modify the Makefiles before code instrumentation can be done. The
effort of such modification is determined by the complexity of the Makefiles.

Since our ultimate goal is to seamlessly integrate code instrumentation into FOSS
projects’ build system, we implemented the following means - through defining two
specific environment variables.

FTREE_SECURITY_INSTRUMENT is the first environment variable that needs to

60

be defined. Its value is expected to be the absolute directory and file name of the
input file of instrumentation guide. On Linux systems, this can be done through the
following Bash command [7]:

export FTREE_SECURITY_INSTRUMENT=

\absolute\dir\to\instrumentation_guide_input_file

SHARED_LIB_NAME is the other environment variable that must be defined. It
should contain an absolute directory and file name of the library containing program
monitoring routines. An example of its definition of Linux Bash command line is as
following:

export SHARED_ LIB_NAME=\absolute\dir\to\SecInstrLib
Consequently, building a Makefile based FOSS project with code instrumentation

can be achieved with three commands on Linux systems as following:

1. export FTREE_SECURITY_ INSTRUMENT=

\absolute\dir\to\instrumentation_guide_input_file
2. export SHARED_LIB_NAME=\absolute\dir\to\SecInstrLib

3. make

Low-level Instrumentation Guide

The instrumentation performed by our GCC extension is guided by the instructions in an

input file. These instructions are called a low-level instrumentation guide, because they are

defined mainly to facilitate fast and efficient processing in the compiler.

Each instruction is a line of string composed of eight fields delimited by spaces. The

61

order, meaning and format of these fields are listed in Table 3.

l Order| Purpose

I Format and Value

) Scope of the concerned program | “function_name” for a function scope
point or “*” for any scope
. .. 0 for instrumenting before a program point
2 Instrumentation position . R .
1 for instrumenting after a program point
0 for instrumenting at function call
1 for instrumenting at variable read
2 for instrumenting at variable write
3 Program point for 4 for instrumenting at pointer dereference
instrumentation 8 for instrumenting at function return
16 for instrumenting at variable declaration
32 for instrumenting at end of variable’s binding
scope
“function name” for a function call or " for any
functions;
. “Filename::lineNum::VariableName” for a variable
Name of a concerned variable or . . .
4 fancti name, where Filename and VariableName are strings
unction . .
and can both use wild character “*”; where lineNume
is a positive integer with O representing all line
numbers of a source file
Name of the function to be . .
5 . k a string of the function name
instrumented in the program
6 Return type of the instrumented | O for void type
function 1 for int type
determine whether return value 0f ¢ ine the val
. or not exposing the value
7 of a function call should be .p &
1 for exposing the value
exposed
determine whether the .
) 0 for not exposing the arguments
8 arguments of a function call 15 ine th .
or exposing the arguments
should be exposed posing g

Table 3: Fields in the Instrumentation Guide Input File

Accordingly, an example instruction in the following line

main 1 16 test.c::32::1i SecInstr VarDecl 1 0 O

advises our extension to instrument a call to function SecInstr_VarDecl () after the
declaration of variable i at line 32 of the source file "test.c" in the main () function scope.

The return type of SecInstr_VarDecl () is int and the last two fields are not used in

62

this example.

High-level Instrumentation Guide

The low-level instrumentation guide presented above is obviously not easy to write or read.
We therefore defined a simple and friendly language for security analysts to write the in-
strumentation guide. The grammar of this language is presented in Appendix A.
Accordingly, to achieve the same instrumentation goal as in previous example, the an-
alysts can write:
after declvar (test.c::32::i) inject "SecInstr_VarDecl";
This is certainly more readable and easier to write.
In actual application, the analysts need only write the high-level instrument guide. They

can then compile it into low-level guide before invoking our GCC extension.

4.3 GCC Internals

This section introduces the GCC internals [42] in brief. Two topics are covered to help
readers better understand our implementation. Section 4.3.1 introduces the architecture

and compilation phrases of GCC. Section 4.3.2 presents the GENERIC and GIMPLE in-

termediate languages.

4.3.1 GCC Architecture and Compilation Phases

Figure 5 shows the architecture of GCC and the phases of compilation in GCC version

4.2.0.

63

C/C++/.../Java Source

Frontend

\ 4

[erme) [o racser [

GENERIC AST

Lowering

Y
GIMPLE AST Middle-end

Build CFG

Y

SSA /
GIMPLE CFG

/RTL Generation/

RTL

/Code Generation/

.._._._._t_._._._._._._._._._.

Backend

Object Code

Figure 5: GCC Architecture and Compilation Phases

64

The GCC version 4 and above are composed of three main parts - the frontend, middle-
end, and backend. The frontend accepts source code by piping it through language-specific
preprocessor and parser respectively. Starting at GCC version 4, the universal output of
GCC frontend is in GENERIC language. This means, all programming languages compil-
able by GCC share the same intermediate representation in the middle-end.

The GENERIC language contains complex statements and nested expressions, making
it difficult to process. Hence, it is firstly lowered to a three-address code called GIMPLE in
the middle-end. Temporary variables are created to decompose the nested expression. The
middle-end further transforms the GIMPLE representation to GIMPLE CFG (Control Flow
Graph in GIMPLE grammar), decomposing the complicated structures by introducing new
goto statements and corresponding labels. Along with the above two steps of transforma-
tion, the middle-end also goes through a list of high-level optimization passes, such as alias
analysis and loop unrolling.

The backend of the compiler generates RTL and object code consecutively. Details of

the workflow in the backend are beyond the scope of this thesis and can be found in [42].

4.3.2 GENERIC and GIMPLE Languages

GENERIC is a language-independent intermediate language to represent all parse-tree con-
structs produced by GCC’s various language-specific frontends. The GCC middle-end per-
forms many passes of AST-level analysis on the GENERIC tree.

GIMPLE is a subset of GENERIC. Most CFG-level optimization passes are performed

on the GIMPLE tree. Each GIMPLE tree is used to build a GIMPLE/CFG. Lexical scopes

65

are represented as containers. Nested expressions are decomposed to a three-address form
with temporary variables storing intermediate values. Control structures such as for and
while loops in C are replaced by gotos. Figure 6, taken from [42], shows an exam-
ple GIMPLE representation and its corresponding C++ source code. A rough GIMPLE
grammar is included in Appendix B

APIs are available to traverse and transform the GENERIC and GIMPLE trees. For

example, the following code fragment traverse the GIMPLE/CFG tree of an entire function:

basic_block bb;
block_stmt_iterator iter;
FOR_EACH_BB (bb)
{
for (iter = bsi_start (bb);
'bsi_end_p(iter);
bsi_next (&iter))

tree currStmt = bsi_stmt (iter);

O \D 00N O\ B W

[T

4.4 Design and Implementation

4.4.1 Adding Instrumentation Passes

Earlier, we mentioned that the GCC middle-end goes through a number of passes for code
transformation and optimization. These passes are coordinated by a utility called the pass
manager. Its job is to execute or conditionally skip the individual passes in the correct
order, and take care of bookkeeping information that is used across the passes.

Typically, the pass manager iterates through a linked-list of registered passes. For each
pass, the manager consults its gate function to check if the pass can be executed. If the

answer is positive, the manager calls its execute function to run the pass.

66

struct A { A(); ~A(Q); };
int i;
int g ();
void £ ()
{

A a;

int j = (--i,
for (int x = 42;
{

i += g()*4 + 32;

x > 0;

}

//end of code

(a) C++ Code

i 2?20 : 1);

_.._x)

void f ()

{

int 1.0, T.1, iftmp.2;
int T.3, T.4, T.5, T.6;
{
struct A a;
int j;
__comp_ctor (&a);
try {
1.0 = 1i;
T.1 = 1i.0 - 1;
i=T.1;
i.0 = i;
if (1.0 == 0) iftmp.2 =

else iftmp.2 = 0;
3 = iftmp.2;
{

int x;

X = 42;

goto test;
loop:;

T.3 =g ();

T.4 T.3 * 4;
i.0 i;

T.5 T.4 + 1.0;
T.6 = T.5 + 32;
i=T.6;

X =x - 1;
test:;

if (x > Q) goto loop;
else goto break_;
break_:;
}
}
finally {
__comp_dtor (&a);
}
}
} // end of code

(b) GIMPLE Representation

1;

Figure 6: Sample Source Code and Corresponding GIMPLE Representation

67

Our implementation starts by including two instrumentation passes in the GCC middle-

end. This involves three steps:

1. Defining pass information

2. Registering our passes in the pass manager

3. Adding functionality to our passes

Defining Pass Information

Each optimization and code transformation pass in the GCC middle-end defines a structure
(tree_opt_pass) that contains all information the pass manager needs to know about

it. Our two instrumentation passes are of no exception.

struct tree_opt_pass pass_tree_security_instrument_vardecl =

{
"sintrument_vardecl", /* name */
gate_tree_security_instrument_vardecl, /+ gate */
tree_security_instrument_vardecl, /* execute +/
NULL, /% sub x/
NULL, /* next x*/
0, /* static_pass_number x*/
0, /* tv_id =%/
PROP_gimple_any, /* properties_required x/
0, /+* properties_provided */
0, /+* properties_destroyed */
0, /* todo_flags_start =/
TODO_dump_ func, /+* todo_flags_finish +/
0 /% letter +/

}i

Figure 7: Pass Information for Instrumentation Phase One

Figure 7 shows how we define the pass information for the first phase of the code

instrumentation.

68

e The gate field points to the gate function, which determines whether the pass is exe-

cuted or not.
e The execute field points to the function containing the working code of the pass.

e The properties_required field defines what GIMPLE tree properties are needed by the
pass. For instrumentation phase one of our extension, we need a valid and language-

independent GIMPLE tree (defined by enumeration value PROP_gimple_any).

Registering Passes

Registering a pass in the pass manager is realized by including the new passes in the
init_optimization_passes () function defined in passes.c. Figure 8 shows

where we inserted two new passes for code instrumentation in this function.

void init_optimization_passes (void)

{

struct tree_opt_pass **xp;

J *k
* security instrumentation phase 1
*/

NEXT_PASS (pass_tree_security_instrument_vardecl);

NEXT_PASS (pass_lower_omp);
NEXT_PASS (pass_lower_cf);
NEXT_PASS (pass_lower_eh);
NEXT_PASS (pass_build_cfqg);

/%%

* security instrumentation phase 2
*/
NEXT_PASS (pass_tree_security_instrument);

Figure 8: Registering Code Instrumentation Passes in passes.c

69

Adding Working Code to Passes

The working code of a pass is defined in its execute function. In the case of our instru-
mentation phase one, it corresponds to the function t ree_security_instrument_-

vardecl.

4.4.2 Adding Command-line Option

Most optimization passes of the GCC middle-end can be controlled with command-line
options. Adding a command-line option in GCC is a trivial task, because all options are

specified in a particular source file, i.e. common . opt.

ftree-security-instrument=
Common Report Joined Var(flag_tree_security_instrument) Init (0)
Enable security code instrumentation

Figure 9: Enabling Command-Line Option for Code Instrumentation in common . opt

Figure 9 shows the entry of command-line option that we added in common.opt. A

brief explanation of the entry is provided below:

e The option ftree-security-instrument= defines the actual option stripped

of the leading hyphen.

e The second line of the option definition defines the attributes of this option. In partic-
ular, the definition Var (flag_tree_security_instrument) specifies that
the string following the option ftree-security-instrument= on the com-
mand line is stored in variable flag_tree_security_instrument and the

definition Init (0) initializes this variable to 0.

70

e Thetext Enable security code instrumentation describes this option.

It appears in the help message of the GCC compiler.

4.4.3 Recognizing Environment Variables

As previously mentioned, security analysts can enable code instrumentation in our GCC
extension through defining environment variables. This is implemented by calling Linux
specific getenv () function.

Special attention was paid to the environment variable SHARED_LIB_NAME, which
specifies the static or shared library that is to be linked to the instrumented program. The
original GCC implementation recognizes linking requirements by checking the ~1 and -L
command-line options. All the external library names are stored in an array when GCC
processes these two options (performed by function process_command () in gcc.c).

To force GCC to link with our instrumentation library defined in environment variable,
we modified process_command () to push the library name in the array of linking

library names.

4.4.4 Instrumentation Phase One - Scope-Wise Instrumentation

Table 4 shows the security-sensitive program points (where our extension can instrument
code) and their corresponding instrumentation phases. In particular, instrumentations for
function returns, variable declaration, and variable’s exiting binding scope are performed

in phase one.

As shown in Figure 8, instrumentation phase one is executed before the middle-end

71

S/N Instrumentation Point Instrumentation Phase

1 function return Instrumentation Phase 1
2 variable declaration Instrumentation Phase 1
3 end of variable’s binding scope Instrumentation Phase 1
4 function call Instrumentation Phase 2
5 variable read Instrumentation Phase 2
6 variable write Instrumentation Phase 2
7 pointer dereference Instrumentation Phase 2

Table 4: Instrumentation Points and Corresponding Phases

lowers the GIMPLE representation. This phase works on high-level GIMPLE represen-
tation because after lowering, all variables are moved out of their BIND_EXPR! binding
context [42] and we lose liveness information of variable declarations that we intend to
instrument.

Figure 10 shows the definition of tree_security_instrument_vardecl, the
execute function of phase one. It calls secinstr_xform_decls and secinstr_-
xform_out_of_scope to instrument the code at variable declarations and end of bind-
ing scopes respectively. Both functions in turn call walk_tree_without_dupli-
cates to traverse the chain of BIND_EXPR of a GIMPLE tree. While traversing, it
searches for variables and function parameters matching the instrumentation guide and

performs the instrumentation if advised.

4.4.5 Instrumentation Phase Two - CFG-Based Instrumentation

Phase two of the instrumentation targets function calls and variable uses. This is real-
ized by traversing the GIMPLE/CFG of each function and matching the function calls and

variable uses in each statement to the instrumentation guide. If a match is found, code

IBIND_EXPR is a type of GIMPLE tree node for representing scopes in programs.

72

static unsigned int tree_security_instrument_vardecl (void)

{

int ret = 0;

if (DECL_ARTIFICIAL (current_function_decl))
return O;

push_gimplify_context ();

secinstr_xform_decls (DECI_SAVED_TREE (current_function_decl),
DECL_ARGUMENTS (current_function_decl));

secinstr_xform out_of_scope (DECL_SAVED_TREE (current_function_decl),
DECL_ARGUMENTS (current_function_decl));

pop_gimplify_ context (NULL);

return ret;

}

static void secinstr_xform_decls (tree fnbody, tree fnparams)
{

struct secinstr_decls_data d;

d.param_decls = fnparams;

walk_tree_without_duplicates (&fnbody, secinstr_xfn_xform_decls, &d);
}

static void secinstr_xform out_of_scope (tree fnbody, tree fnparams)
{
struct secinstr_decls_data d;
d.param_decls = fnparams;
walk_tree_without_duplicates
(&fnbody, secinstr_xfn_xform_out_of_scope, &d);

Figure 10: The execute function of Instrumentation Phase One

73

instrumentation is performed according to the specification in the guide.
The following paragraphs describe how the program point matching is implemented.

An example of actual code instrumentation will be discussed in Section 4.4.6.

e Matching function calls.
According to GIMPLE grammar (see Appendix B), function calls are represented by
CALL_EXPR tree nodes. The CALL_EXPR tree node can appear only in two places
on a GIMPLE tree: It may be a statement by itself, if it does not have side effect; it
may be the right operand of an assignment statement (represented by a MODIFY_~
EXPR tree node). Accordingly, our implementation searches each statement and its
right operand (if there is one) for CALL_EXPR.
Once a CALL_EXPR tree node is found, we use the API:
lang_hooks.decl_printable_name (CALL_EXPR_tpyed_tree, 2)
to retrieve the name of the callee function and compare it to those in the instrumen-

tation guide.

e Matching variable read and write.
Matching variable read and write is fairly easy. Since all GIMPLE trees are in three-
address form, we are sure that only the left operand of an assignment statement can
be written and the variables used in the right operands are only read. Therefore,
we passed a read-write flag to our variable searching routine to differentiate variable

uses.

e Matching pointer dereferences.
Pointer dereferencing is represented by INDIRECT_REF tree node. The GIMPLE

74

grammar allows INDIRECT_REF trees to be used as both left and right operands of
an assignment statement. However, we decided to pass read-write flag to our search
routine as well. This flag is currently neglected. If future extension to our implemen-
tation requires to differentiate read and write access of dereferenced pointers, this

flag can be used for that purpose.

4.4.6 Instrumentation Example - Supporting Suppression

[Function l Purpose
GIMPLE/CFG APIL:
split_block(basic_block, block_stmt_iterator) split a basic block into two before the given
iterator
make_edge make an edge of EDGE_TYPE between
(basic_block, basic_block, EDGE_TYPE) the

given blocks

find_edge(basic_block, basic_block)
set_immediate_dominator
(DOMINATOR_TYPE, basic_block, basic_block)

find the edge connecting to blocks
set the first block to be the dominator of the
second one

TREE CONSTRUCTION APIL:
create_tmp_var(tree type, const char* name)

create a tree node of a temporary variable
of the

given type and name

build #(...)

create a tree node with # number of
operands

bsi_insert_after
(block_stmt_iterator*, tree, INSERT_MODE)

insert a tree after the given iterator for
the given mode

SET_EXPR_LOCUS(tree, location_t*)

set the source location of a tree

Table 5: GIMPLE APIs Used for Instrumenting Suppression Code

Implementing code instrumentation that can suppress certain statements in the original
program is not so straightforward that it involves a series of tree transformation. A number
of GIMPLE/CFG APIs in Table 5 are used to accomplish our goal.

Figure 11 illustrates the two-step transformation of a GIMPLE tree to instrument the

75

Previous
Statement

Current Staten yent
. ﬁaxt Statement

\

- ﬂrewaua i EDGE_TRUE_VALUE

mnd bh

_ Statement

EDGE_FALLTHRU'
jain bb
Next Stﬂtﬁment " EDGE _FALLTHRU

oy Statement
‘ ;mt‘r mﬁ wi*

; LEDGE_TRUE_VALUE

then bb ¢
EDGE._FALLTHRU Pl

'Maxs Smf&manf | EDGE_FALLTHRU

DR A

join_bb 4

Figure 11: Instrumentation of Code Suppression

76

code suppression in the program. In this illustration, our goal is to instrument a call to
instrumented_func_call () before "Current Statement" and suppress it if the in-
strumented function returns 0.

The first step splits the basic block containing "Current Statement” into three blocks,
i.e. cond_bb, then_bb, and join_bb; then creates edges to connect these blocks. Note that
edges of GIMPLE/CFG are typed. For example, if a condition expression is evaluated true
at the end of cond_bb, execution will follow EDGE__ TRUE_VALUE-typed edge to then_bb.

The second step instruments the call to inst rumented_func_call () and stores
its return value into a temporary variable. A branching statement is then appended to the

end of cond_bb to evaluate the return value.

4.5 Summary

In this chapter, we introduced the implementation of a new approach to code instrumenta-
tion - extending GCC with instrumentation functionality. The motivation of this research
thread was to develop a software utility for injecting program monitoring routines into a
testee program, so that when it executes, the program monitor can dynamically detect vio-
lations of security properties.

We decided to choose this approach based on two reasons. Firstly, compiler-aided code
instrumentation is more efficient than source-to-source code transformation approaches and
more powerful than pre-processor-assisted and binary wrapping approaches. Secondly,
extending GCC facilitates integration of code instrumentation to the automatic build system

of many FOSS projects.

77

Our prototype implementation adds two interfaces to the GCC compiler such that code
instrumentation can be enabled either through command-line option or through environ-
ment variable definition. The extension accepts an instrumentation guide to inject code at
a selected set of program points. The grammar of the input guide was briefly introduced in

this chapter.

78

Chapter 5

Integrated System and Experiments

5.1 Integrated System

This section introduces the interface, functionality and implementation of our integrated

system for dynamic vulnerability detection.

5.1.1 System Overview

Figure 12 illustrates the overview of the user interface of our integrated system. Area
1 (square-framed 1 in the figure) displays all the FOSS projects that are created in our
system. That being said, our system can manage and analyze multiple software projects.
Area 3 displays the detected vulnerabilities of a project. Area 2 is the main view of the
system. From left to right in this area, four tabs present different views and functionalities

of our system. Respectively, they are:

e Project Overview shows the general description of the currently selected project.

79

E¥Y Seciirity Evaluation Systeps £.00

oh tins Humber T 1 iinerabliny Dascriptian™

Figure 12: Integrated System - Overview
e FSM Spec is a GUI editor for security analysts to graphically compose security

properties.

e Source Code is a GUI text editor with syntax highlighting, where security analysts

can edit the source code to fix revealed bugs.

e Vulnerability Viewer hosts a source code navigator, which displays the file name,

line number, and source code corresponding to particular vulnerabilities.

5.1.2 System Configuration

At the first time when our system is run, users are prompted with a dialog that asks them

for some system-specific settings. Figure 13 shows these settings:

e secgcc Bin Directory is the directory containing the executable file of our GCC

extension.

30

g‘;“témpfcadeg

- rerryicodes/ShellSe r’iptsfﬁrijuiidDoxyDﬁtDriwr‘ shi

. Iy/codes/sheliScripts/ DoxyCSreCodePageFinder shl

Figure 13: Integrated System - Preference Dialog

o Shell Script Directory is the directory containing the shell scripts that drive the

execution of project building and analysis tasks.

e Project build Driver is a specific shell script that builds a FOSS project and gener-
ates Doxygen [3] documentation of it. Our current implementation includes a tem-
plate shell script that assumes Make is the automatic build system used by the project.
Users are free to modify it or supply their own driver script in order to support other

automatic build systems such as Ant.

e Doxygen search Driver is an optional shell script that helps searching Doxygen

documentation for particular program points. Details are covered in Section 5.1.6.

During later executions, users are also free to modify the system configuration by invoking
the configuration dialog through a program menu as shown in Figure 14. The design deci-
sion of allowing configurable choices of the compiler and various shell script is to facilitate
future extension of the system. As our system is only the first phase a larger on-going secu-
rity analysis tool, more features such as static analysis and support of more programming

languages such as C++ and Java are expected to be added to it. Accordingly, it will be

81

Figure 14: Integrated System - Configure System Settings through File Menu

easier to extend the capability of our system through the modification of these settings.

5.1.3 Project Management
Project Creation

Our system offers basic project management functionalities, i.e. project creation, configu-
ration, building, execution, and vulnerability reporting. All these functionalities are acces-

sible through the Project menu as shown in Figure 15.

Security Evaluation System 1

pec | Source Code

Bemctgfti' Viilnerabil
Suures Files!

Figure 15: Integrated System - Project Management through Project Menu

In order for our system to perform dynamic vulnerability detection, security analysts

82

need to create a project corresponding to the FOSS project they intend to evaluate. This
is achieved through menu Project— Create Project. A dialog as shown in Figure 16 then
prompts up and asks for the description and the source directory of the newly added FOSS

project.

ject f)iﬁmg

lozip 1.24

: ithme;’terrwcpdesfgzip 1,2 4—f0r—tesf

Figure 16: Integrated System - Project Creation Dialog

Once the create button in the dialog is clicked, our system registers the newly added
project, searches for all its source codes, and displays these information in the system’s

project list. This is illustrated in Figure 17.

E93 Security Bvaluation Systens 1,000

oot DI fhomeery/ codes/ gzipd24-for-test
; - Dmeast Valnerabiiities

- [contigure:

- [y contigure. Yuingrabliy Description .
Y copying

- [erre

Figure 17: Integrated System - Newly Created Project in Project List

83

Security analysts then define the security properties they intend to check against the
project or reuse some of the existing pre-defined properties. The details of property speci-

fication is deferred to later paragraphs.

Project Building

Our system can build a project with or without security properties being specified. In the
first case, the system simply performs a normal build of the FOSS project. In the latter
case, code instrumentation is performed during compilation.

Our current implementation uses a shell script to automate project building. It assumes
that a Makefile locates in the root source code directory of the testee program. This is
true for most FOSS projects. If there is a conflict with this assumption, security analysts can
always modify the behavior of our system through re-configuring the system or modifying

the template script (as previously mentioned).

[ERROR].‘. ace: /home/tevrv/codes}gzlpl’4-for-testjSecgcclns(rSharedle 50! linker | lnput file. unusm:l because llnkmg not do|
AISHELL.OUTFUT]$ gtc ~c -DASMV. ~DSTDC.HEADERS = 1. ~-DHAVE-UNISTD_H=1 ~DDIRENT = 1. ~g.linpack. ¢
HELL, OUTPUT]$ FTREE_SECURITY INSTRUMENT isi /homa/terryfcodies fazip 12 4-for-1est/secgec. Instroguide:input :
[ERROR]S ‘gec: /h : fcades/uzipl24-for-test/SecgeeinstiSharedLit.so; inkerinput file unused because linking-hat doj :
HELL_OUTFUT]S dcc =t ~DASMY ~DSTDC_HEADERS = | ~DHAVE UNISTD. H=1 ~DDIRENT « 1'~g unizh:c |
[SHELLOUTPUT 1$ FTREE.SECURITY. IMSTRUMENT isi /Home fterryjcodlesiazipl 2 4-ToP=test/secgue. instr.quide. input
g ham»a}terw}codes/ngplz4-fnr-t»esuSecg:cInstﬁharedle o linker inputfile unused betause linking net do

ETREE. ECURIT& INSYRUMENT is! ,'home/terwfcndes/gznnlu for-\est/secgcc mstr auids. input
ny;csdeslgzmiz4~fm'—testl>e:gc:lnstrSharevdle So:-linkér injput file trused because linking not da

Figure 18: Integrated System - Dialog of Project Building Result

The result of project building is displayed in a dialog as in Figure 18. From the di-
alog, security analysts can access the complete console messages that are emitted during

84

compilation, which is helpful to diagnose any compilation errors.

Project Execution

Once a project is built, security analysts can execute it by selecting the executable file and

defining command-line options, as illustrated in Figure 19.

Figure 19: Integrated System - Dialog of Project Execution Configuration

Our current implementation enables security analysts to manually generate test cases
for a FOSS project then execute it through the interface shown in Figure 19. The experi-
ments that we will show in Section 5.2 were conducted through this interface. We expect
that an automatic test case generator and a program execution driver will be developed to

replace the current interface in future extension.

5.1.4 Vulnerability Report, View and Fix

When executing an instrumented executable of the testee program, violations of security
properties are detected and recorded. Security analysts can opt for displaying the complete
list of all the detected property violations, as shown in Figure 20. For each detected prop-
erty violation, the system provides the exact program point (identified by the source file

name and line number of the concerned statement) where the violation is detected to help

85

security analysts debug the program. It also prints a brief description of the violation. For
example, Figure 20 shows that at line 1725 of gzip.c of the tested project “gzip 1.24”, a

double-freeing vulnerability is detected.

P Bacurity Bvstuation Gyateist LA o oo

v oCodss | ProletName gop 124 S
¢ 2 fhome/terryicl ot Raot Dii fhoine/ terny/ codes fozifi 24 Tortesy:
o (9 thome terr o bt L i
o [mometerny
o[fdime fap
o= {78 thometerry,
o (1 thotve terny
o (2] fhomedterny
<0 thame (1afty
o 5 hame e
w2 thomes/tefry,
- algoritom. ad:
Noigc
- [Ybitg.e
[Ciangetag
Ty contig
[:j cbiiﬁgurg
- T configuradin |-
[y corvne
Dychwre

sted Properties |

. Adures Bils Mame
L 1725

ST
Ling bumier,

Figure 20: Integrated System - List of Property Violations

A click on any particular vulnerability list entry leads security analysts directly to the
detailed vulnerability view, where the vulnerable statement in the source code is displayed
and high-lighted. This is illustrated in Figure 21.

In addition to simply displaying the detected security vulnerabilities, our system also
allows analysts to fix and re-test them. Particularly, we included a multi-tabbed text editor

(see Figure 22) with syntax highlighting for multiple programming languages.

5.1.5 Security Property Specification

In Section 3.3, we mentioned that the state transitions in component edit automata are
specified with the help of State Machine Compiler. We also introduced the implementation

86

¢ Projects
¢-Edosip4.2.0
P

e [Ineturils

Line Mumber: Jo1

testStr = (ohar Yallec(i00);

FREEGinbuf);
FREE Couthint);
EE’LE@JQN’):
EREE (window);
01733 1 Frdet PASSES. B4
i ,g;mg; Bretiny;
01735 #etse " X
1736 FREE (tab prefix0);
01737 EPEE Craly_prefixid,
01738 #endit
01739 extt fexiteote))
a17ab 3
01741
01742 /" snsaauuunmu:
o Signal and e

Figure 21: Integrated System - Detailed Vulnerability View

- Ty deflate.c
- [detiate o
[Doxviile
- Y getapt.c
ﬁ getapt h

i Vag with @

Jeag-Toap gaitl

systatic char - *1icense_ns
Copyright (0 159
Thf:: 13?05;1'-21{!&‘1& ’f‘araa

pald i donaif. by Hark Adbar,
T T T donath oonpress
e Wonds, I HoKie, Steve Dawies,

b

HEVING Tor e software TTcenss,

postan algarvoimes and File feepmars,

et

emqtr(buw o andsor. nodt Py,
Ut License as pililished by",

TErsion .3 ov {ahoour optiand’,

Figure 22: Integrated System - Source Code Editor for Bug Fixing

87

of Team Edit Automata as a hierarchy of classes so that security properties can be written
in a programmer-friendly manner. Experienced security analysts can certainly use a text
editor to accomplish such task. However, programming from scratch in a text editor is
a tedious and error prone practice. Moreover, the written property specifications are not
easy to read and understand. Therefore, our system provides a graphical interface to let

the analysts visually specify security properties. The system automatically converts the

graphic property specification to corresponding implementation code.

Figure 23: Integrated System - Overview of Security Property Editor

Figure 23 shows the overview of the Security Property Editor in our system. The toolbar
offers access to most of the graph editing functionalities. The left-most three icons allow

the analysts to change the graph edit mode, i.e. >4 for selection mode, 4 for edit mode,

H

and (f for deletion mode. The right-most three icons (:) allow the analysts to
change the display mode of graph, i.e. fitting canvas width, canvas height, and canvas size

respectively from left to right. The buttons in the middle allow security analysts to zoom

88

in/out the graph and save it. The icons of these buttons are standard and self-explaining.
Figure 23 shows that the analysts can specify the name of the property in the Attribute

viewer (annotated with a round-cornered rectangle in the figure). In addition to the name,

the analysts generally specify much more information of a security property, including

adding states and transitions in the graphic editor and defining their attributes.

Adding a State

)

%Ecw}“y Buniuation Syatem Lo ot

Cealosaiéd

Figure 24: Integrated System - Specifying State Name in Security Property Editor

Adding a state in the security property editor involves two steps. Firstly, the analysts
click the toolbar button to switch to edit mode and then click anywhere on the canvas to
create a new state node. A default name is automatically generated for the new node.
Secondly, they optionally provide a more meaningful name to the new state in the Attribute

viewer, as shown in Figure 24.

89

Adding a Transition

In edit mode, the analysts can add a transition in tﬁree ways. Firstly, if both start and desti-
nation states are present on the canvas, a new transition can be added by mouse-clicking the
start state than releasing in the destination state. Secondly, if only the start state is present,
by mouse-clicking the state and releasing in any empty space on the canvas, a new transi-
tion and the new destination state are created. Thirdly, if the start and destination states are
the same state on the canvas, a new loop-back transition can be added by mouse-clicking
the state than dragging and releasing in the same state.

In reality, for the same pair of start and destination states, there might exist multiple
transitions (e.g. different input actions may trigger identical state change with different
output actions). Accordingly, our system allows the analysts to add multiple transitions

between two states.

Defining Transition Event

A transition is properly defined by an event, an optional guard condition, a list of actions as
well as its start and destination states. Figure 25 shows how to define the transition event
in the security property editor.

Particularly, the analysts need to give a name to the event, and optionally specify a list
of event arguments. In the current implementation, the analysts are free to use any primitive

data type in the C language for these arguments.

90

i fity Eatgat]

Figure 25: Integrated System - Defining Transition Event in Security Property Editor

Figure 26: Integrated System - Defining Transition Guard in Security Property Editor

91

Defining Transition Guard

The transition guard of our component edit automata is implemented as conjunction and/or
disjunction of logical expressions. The security property editor of our system allows the
analysts to write the guard condition in a visual manner. Figure 26 shows the attribute
editor for transition guard.

Particularly, the analysts can add zero or more simple logic expressions to the guard
condition. The expressions are added either as conjunction or disjunction to the existing

ones.

Defining Transition Actions

Figure 27: Integrated System - Defining Transition Actions in Security Property Editor

Event transition of our component edit automata must at least emit one action, i.e.
one of Ok, suppress, insert, or halt. This is reflected in the graphic property editor as a
compulsory action in the Action tab of the Attribute Viewer. The analysts may select any

92

one of these four action from the drop-down list (see Figure 27).

Additional actions can be defined on the transition, as shown in Figure 27. When the
analysts save the property, our system automatically generates the prototype and an empty
implementation body for each additional action, where the analysts can insert functioning

code.

Saving Security Properties

Once the analysts finish editing a security property in the graphic editor of our system, they
click the o button to save it. This triggers a series of tasks that our system performs

without the analysts’ knowledge.

1. The graphic components on the canvas are serialized to an XML file, so that next
time when the property is loaded to the security property editor, these components

and their attributes are correctly restored and displayed.

2. A .sm file is generated corresponding to the state transition defined by the property

specification.

3. The State Machine Compiler is called on the .sm file to automatically generate the
C++ code of a finite state machine corresponding to the property’s state transition

definition.

4. The context class of the finite state machine is automatically generated as a subclass

of ComponentAutomata.

93

When all the above tasks are accomplished, security analysts only needs to insert the
functioning code to the context class to finalize the property specification. If security ana-
lysts choose to check the property at later stage, the implementation code is compiled into

a shared library and instrumented to the testee program.

5.1.6 System Implementation
GUI Implementation

The graphic interface of our integrated system is developed completely in Java and com-
patible with Java 5.0 and above.

Two external contributions to the GUI implementation deserve credits:

e The graphic security property editor is based on the Graph library of Real Time

Studio developed by Dr. Rachid Hadjidj [48].
e The multi-language syntax highlighting text editor uses the free syntax highlighting
library from Mr. Stephen Ostermiller [69].
Implementation of Automatic Project Building

Earlier we mentioned that our system can automatically build and instrument a FOSS
project with the only knowledge of where the project’s source code locates. This automa-

tion is carried out by a shell script.Particularly, the script performs the following tasks:

1. Setting up project specific environment variables;

2. Identifying the compiler and Makefile to be used with the project;

94

3. Building the project optionally with code instrumentation;

4. Instantiating a Doxyfile from the Doxyfile temple and then generating the Doxygen

documentation of the entire project.

The Doxygen documentation of the project is used by our system to facilitate vulnera-

bility report.

5.2 Experiments with the Integrated System

5.2.1 Experiment Environment

All our experiments of the integrated system were conducted with the following system

setups:

e Operating System: Ubuntu Linux release 6.10
e Linux Kernel: Linux kernel version 2.6.17-11-generic

¢ Java Runtime Environment: Java(TM) SE Runtime Environment (build 1.6.0_02-

b05)
e Shell: GNU bash version 3.1.17(1)-release

autoconf: GNU Autoconf version 2.60

make: GNU Make 3.81

Awk: mawk version 1.3.3

Doxygen: doxygen version 1.4.7

95

5.2.2 Experiment 1: Checking Memory Management Vulnerabilities
Experiment Objective

This experiment aimed at proving the effectiveness of our solution, i.e. dynamically check-
ing user-defined security property can be achieved by monitoring program execution with
Team Edit Automata.

We chose to detect memory management vulnerabilities, because they persist in C pro-
grams. Moreover, many existing static and dynamic security analysis tools check these
vulnerabilities, as we mentioned in Section 2.2. Therefore, we were able to compare the

performance of our system with that of existing tools.

Experiment Methods

The security property for safe memory management and access is specified in the Security
Property Editor of our integrated system, which in turn generates MemorySM.sm in the
syntax of State Machine Compiler (SMC). Appendix C.1.1 includes the complete code of
MemorySM.sm.

The state of each allocated memory blocks (both on the stack and heap) is captured
by one TeamAutomata object. The TeamAutomata object consists of one Compo-—
nentAutomata subclass object that composes a state machine object generated from
MemorySM.sm and multiple ComponentAutomata subclasses to capture the states of
the associated variables.

The specification encompasses the following vulnerabilities related to memory man-

agement:

96

Dereferencing wild and null pointers

Freeing wild and null pointers

e Double-freeing

e Memory leak

Out-of-boundary memory access

e Out-of-boundary array indexing

Reading uninitialized memory

We created a list of benchmark C programs (see Appendix C.2), which are known to
have elusive memory management vulnerabilities. We used our integrated system and two
well-known security analysis tools to check memory management vulnerabilities in these
programs. When checking programs with our system, we manually generated test cases to
drive program execution. We will discuss the limitation of our current system further in

Chapter 6.

Experiment Results

Table 6 shows the experiment results. We summarize these results as following:

e Checking Program 1:
Program 1 has an out-of-boundary array indexing vulnerability, which is triggered
when the index variable is modified before accessing the array. Among the three

tools we used to check the program, two (including our system) successfully detected

97

Vulnarable Programs

Expetiment Results

Program Name |Vulnerability Description [Teols Result Message Notes
Program 1 Qut-of-boundary aray |Our System Error. Tllegal array indexing with indexvalue -2 at
indexing Experiment1.c.1b
Klocwork K7.5 [PASSED: 0 Errors, 0 Wamings, 0 Filtered
Insure++ 5.1 |Writing array out of range: staticBufli} Index used:
2
Valid range; 0 thru 9 {inclusive}
Program 2 Double-freeing Our System Error; Double-free or corruption at 0x80a68b0 at
Experiment2.c:17
Klocwork K7 .5 |PASSED: 0 Errors, § Warnings, U Filtered
insure++ 5.1 |Freeing dangling pointer, 1 unigue occurrence Debug assertion failed
1 at an unknown location and program crashed.
Program 3 Buffer-overflow Our System Error; Hllegal memory access at 0x80a7930 at
Experimentd.c:20
Klocwork K7 .5 |PASSED: i Errors, 0 Warmings, Filtered
insure++ 5.1 MSURE_ERROR: Internat arror, 1 unigue
occurence
Program 4 Buffer-overflow Our System Error: llegal memory access at 0x80a68fb at
Experimentd.c.20
Klocwork K7.5 |PASSED: 0 Errors, 0 Warnings, 0 Filtered
lnsure++ 5.1 |couldntbe compiled with Microsoft Visual C++
6.0 &Insure++ 5.1
Program 5 No Exploitable Our System {no error was reported)
Vulnerabilty Kiocwork K7.5 |Experimentb.c(25):Severe:Double freeing of freed
memory pointed by bufZ.
NOT PASSED: 1 Errors, 0 Warmings, 0 Filtered
Insure++ 5.1 |couldnt be compiled with Microsoft Visual C++
6.0 & insure++5.1
Program 6 Buffer-overflow Our System | Error: lllegal memory access at 0x80a%08d at

Experment6.c;:18

Klocwork K7 .6

PASSED: 0 Errors, 0 Wamings, 0 Filtered

Insure++ 5.1

INSURE_ERROR: Internal error, 1 unique
OLCUITERNCE

Table 6: Experiment Result of Checking Memory Management Vulnerabilities

98

the vulnerability. Klocwork failed in this case. We assumed that the static analysis
performed by Klocwork is not sophisticated enough to consider the data flow that

affects the indexing variable.

Checking Program 2:

Program 2 has a double-freeing vulnerability, resulting from freeing one of the two
circular-referencing pointers. Our system successfully detected the double-freeing
action and avoided program crash by suppressing the second freeing action. Insure++
was able to detect the vulnerability as well. However, the testee program crashed after
a debug assertion failure was reported. Klocwork failed to detect the vulnerability in

Program 2.

Checking Program 3:

Program 3 is vulnerable to buffer overflow, where the buffer size is dynamically de-
termined by user input and an unsafe string manipulation function was used without
checking buffer size. Our system detected an illegal memory access and reported the
vulnerable statement in the program. Insure++ also detected an error, but failed to

identify the cause. Klocwork did not report any detected vulnerability or error.

Checking Program 4:

Program 4 has a similar vulnerability as Program 3. Our system detected buffer
overflow as an illegal memory access. Klocwork did not report any error. As for
Insure++, we were not able to compile or instrument the program in the Microsoft
Visual C++ 6.0 (VC++-6.0) IDE bundled with Insure++. This is because our program
is written in C and VC++-6.0 uses a C++ compiler.

99

e Checking Program 5:
There is no exploitable vulnerability in this program. The freeing action at line 22
will never execute and so double-freeing will never occur. We executed this pro-
gram in our system with integers from 1 to 10 without detecting any vulnerability.
Klocwork detected a double-freeing vulnerability at line 25. This is certainly a false

positive. Again, we could not compile the program with VC++-6.0 and Insure++.

e Checking Program 6:
Program 6 has an buffer overflow vulnerability associated with a static array. The vul-
nerability roots in the unsafe string printing function provided by standard C library.
Our system detected an illegal memory access where the string printing function is

called. Insure++ detected an unknown error and Klocwork failed to find any error.

To sum up, the above experiment results demonstrated that dynamically monitoring and
checking program actions against our security properties can effectively reveal security
properties. Some of these vulnerabilities are not easy to detect with the static analysis

approach.

5.2.3 Experiment 2: Scalability and Usability Test
Experiment Objective

Scalability and usability are both crucial to our system, because the objective of our on-
going research project is to devise an automatic security testing tool. Accordingly, our
integrated system is expected to work with FOSS projects of various size in an automatic

or semi-automatic manner. Particularly, the system should build and instrument FOSS

100

LProject Name Num Of Files { Num Of Lines I Project URL

Amaya v9.55 2281 907947 http://www.w3.org/Amaya/

gdLibrary v2.0.35 | 214 107889 http://www.libgd.org/

gzip vi.24 96 24247 http://www.gzip.org/

inetutils v1.5 498 206574 http://ftp.gnu.org/gnu/inetutils/

Table 7: FOSS Projects Used in Scalability and Usability Experiment

projects with as little human involvement as possible.

Experiment Methods

We experimented with four FOSS projects of various scales (see Table 7) to evaluate the
scalability and usability of our integrated system. For all the projects, we enabled code

instrumentation of the aforementioned memory management security property.

Experiment Results

The following paragraphs document our experience of creating, instrumenting and execut-

ing these projects in the system.

e Amaya version 9.55:

Project creation was performed strictly following the description in Section 5.1.3.
Building and instrumenting the project required several prerequisites to be satisfied.
Firstly, a distribution specific directory (in our experiment Linux) needed to be cre-
ated. Secondly, the Mesa library distributed with the source code needed to be built
and installed in the system. Thirdly, a project Makefile needed to be generated by
autoconf utility through the ". /configure CFLAGS=-g" command-line option.
Executing the project did not require extra effort. We followed the process described
in Section 5.1.3 to execute the program.

101

e gdLibrary version 2.0.35:
Creating the project required no additional effort to the process described in Section
5.1.3. A project Makefile needed to be generated by autoconf utility before building
and instrumenting the project. As this is only a library, we could not execute it

without extra effort.

e gzip version 1.24:
Creating and executing the project were performed following the normal process
described in Section 5.1.3. Building and instrumenting the project also necessitated

a project Makefile to be generated by autoconf utility.

e inetutils version 1.5:
The project creation, instrumentation and execution process of inetutils were identi-

cal to that of gzip.

The following points sum up our experiment on the scalability and usability of the

integrated system.

e In general, automatic project building and instrumentation was achieved. As men-
tioned before, our current system anticipates an existing Makefile to drive project
building. Hence, invocation of auto-configuration from command-line is accepted.
We did not modify projects’ Makefiles to enable automatic building. Three of the
four projects were successfully built and instrumented based on the existing Make-

files.

e The exceptional case, i.e. Amaya, represents the scenario where a FOSS project uses

102

external libraries that are not available in the operating system. So far, we have
not come up with any solution to this issue, because library dependency is project-

specific.

e Experiment with gdLibrary demonstrates the limitation of our build-and-run ap-
proach. The current system can only work with executable FOSS projects. Extra
efforts are needed in order to dynamically analyze the behavior of a library. For

example, a driver program is to be constructed to use its APIs.

5.3 Summary

In this chapter, we introduced our integrated system for security property specification and
dynamically checking properties on FOSS projects. We conducted two major experiments.
Experiment 1 demonstrated the capability of our system to dynamically detect security
vulnerabilities. Experiment 2 showed that our system can build, instrument and execute
large-scale FOSS projects. With future extension of an automatic test suite generator, we

expect our system to automatically check security properties of large-scale FOSS projects.

103

Chapter 6

Conclusion

In this thesis, we reviewed different approaches to detecting security vulnerabilities in soft-
ware source code. We investigated several tools for statically and/or dynamically analyzing
source code for security evaluation. We discussed the advantages and disadvantages of both
approaches, and particularly presented the motivation of introducing an extensible dynamic
security analysis tool to work in synergy with static tools. We discovered that few dynamic
program analysis tools support detection of user-specified security properties.

Our research efforts resulted in an integrated software system that can check system-
specific security properties. Particulary, we introduced a new mathematical model called
Team Edit Automata with prototyped implementation for security property specification.
An extended version of GCC is developed to assist in automatically instrumenting program
monitors in testee programs. The current implementation allows security analysts to in-
strument arbitrary code at various security-sensitive program points. The integrated system
supports management of multiple FOSS projects, automatic project instrumentation and

execution, and error report and review.

104

Our integrated system is the first part of a long-term ongoing research project - TFOSS
project. The expected benefit is to automatically detect security vulnerabilities in FOSS
projects with synergic contribution from static security analysis tools. So far, our system
has built up an infrastructure for dynamic security analysis. However, to achieve this goal,

the following issues need to be addressed:

1. How can we take advantage of static analysis to reduce the runtime overhead of our

instrumentation code?

2. How do we automatically generate test cases to drive the execution of instrumented

program?

3. How can our tool collaborate with static security analysis tools to improve the accu-

racy and soundness of the analysis?

Further to these questions, we need to improve our system with more features, including
more powerful instrumentation capability, automatic test suite generation, interface with

static security analysis tools, etc.

105

Bibliography

[1] autoconf. http://www.gnu.org/software/autoconf/ (Date of Access August 23, 2007).
[2] Dmalloc. http://dmalloc.com/ (Date of Access: July 27, 2007).
[3] Doxygen. http://www.doxygen.org (Date of Access: August 20, 2007).

[4] Forrester research. http://www.forrester.com/rb/research (Date of Access: August 14,

2007).

[5] GCC Core 4.2.0. http://gcc-ca.internet.bs/releases/gcc-4.2.0/ (Date of Access: August

20, 2007).

[6] GCC Front Ends. http://gcc.gnu.org/frontends.html (Date of Access: August 24,

2007).

[7]1 Gnu-bash. http://www.linuxjournal.com/article/2784 (Date of Access: July 10, 2007).

[8] The GNU Compiler Collection. http://gcc.gnu.org/ (Date of Access: August 24,

2007).
[91 GNU Make. http://www.gnu.org/software/make/ (Date of Access: July 23, 2007).

[10] Insure++. http://www.parasoft.com/ (Date of Access: September 3, 2007).

106

[11] Klocwork. http://www.klocwork.com (Date of Access: September 2, 2007).

[12] National vulnerability database. http:/mvd.nist.gov/ (Date of Access: August 2,

2007).

[13] Puma online user’s manual. http://ivs.cs.uni-magdeburg.de/ puma/UsersManu-

al/HTML/nodel.html (Date of Access: August 12, 2007).

[14] Splint. http://www.splint.org/ (Date of Access: July 21, 2007).

[15] The strategy design pattern. http://www.exciton.cs.rice.edu/JavaResources /Design-

Patterns/StrategyPattern.htm (Date Of Access: August 23, 2007).

[16] IEEE Standard Glossary of Software Engineering Terminology, volume IEEE Stan-

dard 610.12-1990. IEEE, 1990.

[17] Alfred V. Aho and Jeffrey D. Ullman jt.author. Principles of compiler design.

Addison-Wesley Pub., Reading, Mass. ; Don Mills, Ont., 1977.

[18] O. H. Alhazmi, S. W Woo, and Y. K. Malaiya. Security vulnerability categories in
major software systems. Proceedings of the Third IASTED International Conference

Proceedings Communication, 2006.

[19] Cyrille Artho, Viktor Schuppan, Armin Biere, Pascal Eugster, Marcel Baur, and Boris

Zweimiiller. Jnuke: Efficient dynamic analysis for java.

107

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Ken Ashcraft and Dawson Engler. Using programmer-written compiler extensions
to catch security holes. In 2002 Symposium on Security and Privacy, pages 143—
159, Berkeley, CA, May 12-15 2002 2002. Computer Systems Laboratory, Stanford

University, Stanford, CA 94305, United States.

L. Bauer, J. Ligatti, and D. Walker. Types and effects for non-interfering program

monitors. Software Security - Theories and Systems, 2609:154-171, 2003.

Lujo Bauer, Jay Ligatti, and David Walker. Composing security policies with poly-
mer. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Program-

ming language design and implementation, pages 305-314. ACM Press, 2005.

Maurice H. Ter Beek, Clarence A. Ellis, Jetty Kleijn, and Grzegorz Rozenberg.
Synchronizations in team automata for groupware systems. Comput.Supported

Coop.Work, 12(1):21-69, 2003.

Nadia Belblidia, Mourad Debbabi, Aiman Hanna, and Zhenrong Yang. Aop extension

for security testing of programs. pages 647-650, 2006. Canadian Conference on

Electrical and Computer Engineering 2006.

Rudolf Berrendorf and Bernd Mohr. Pcl - the performance counter library: A common
interface to access hardware performance counters on microprocessors. Technical

report, Research Centre Juelich, 2003.

Lubo§ Brim, Ivana Cern4, Pavlina Vafekov4, and Barbora Zimmerova. Component-
interaction automata as a verification-oriented component-based system specification.
volume 31, page 4, New York, NY, USA, 2006. ACM Press.

108

(27]

[28]

[29]

(30]

[31]

(32]

(33]

M. Debbabi C. Talhi, N. Tawbi. Execution monitoring enforcement for limited-
memory systems. In the International Conference on Privacy, Security and Trust,

2006.

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. EXE: automatically generating inputs of death. In CCS ’06: Proceedings of
the 13th ACM conference on Computer and communications security, pages 322-335,

New York, NY, USA, 2006. ACM Press.

Sean Callanan, Radu Grosu, Xiaowan Huang, Scott A. Smolka, and Erez Zadok.
Compiler-assisted software verification using plug-ins. In 2006 NSF Next Gener-
ation Software Workshop, in conjunction with the 2006 International Parallel and

Distributed Processing Symposium (IPDPS 2006), 2006.

Benjamin Chelf, Dawson Engler, and Seth Hallem. How to write system-specific,

static checkers in MeTal.. SIGSOFT Softw.Eng.Notes, 28(1):51-60, 2003.

H. Chen, D. Dean, and D. Wagner. Model checking one million lines of ¢ code, 2004.

Hao Chen and David Wagner. Mops: an infrastructure for examining security prop-
erties of software. In CCS ’02: Proceedings of the 9th ACM conference on Computer

and communications security, pages 235-244, New York, NY, USA, 2002. ACM

Press.

Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC/FSE-9:

Proceedings of the 8th European software engineering conference held jointly with

109

(34]

[35]

[36]

[37]

[38]

[39]

[40]

9th ACM SIGSOFT international symposium on Foundations of software engineering,

pages 109-120, New York, NY, USA, 2001. ACM Press.

Alan DeKok. Announce: Pscan, a simple security scanner.

http://seclists.org/bugtraq/2000/jul/0095.html, July 2000.

Nachum Dershowitz and Zohar Manna. Verification : theory and practice : essays
delivered to Zohar Manna on the occasion of his 64th birthday. Springer-Verlag,

Berlin ; New York, 2003.

Guy Edjlali, Anurag Acharya, and Vipin Chaudhary. History-based access control for
mobile code. In CCS ’98: Proceedings of the 5th ACM conference on Computer and

communications security, pages 38-48, New York, NY, USA, 1998. ACM Press.

Clarence Ellis. Team automata for groupware systems. In GROUP ’97: Proceedings
of the international ACM SIGGROUP conference on Supporting group work, pages

415-424, New York, NY, USA, 1997. ACM Press.

U. Erlingsson and F.B. Schneider. Sasi enforcement of security policies: a retrospec-
tive. DARPA Information Survivability Conference and Exposition, 2000. DISCEX

’00. Proceedings, 2:287-295 vol.2, 2000.

M. Ernst. Static and dynamic analysis: synergy and duality. ICSE Workshop on

Dynamic Analysis (WODA), Portland, Oregon, USA, May 2003.

D. Evans and A. Twyman. Flexible policy-directed code safety. Security and Privacy,

1999. Proceedings of the 1999 IEEE Symposium on, pages 3245, 1999.

110

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

David Evans and David Larochelle. Improving security using extensible lightweight

static analysis. IEEE Softw., 19(1):42-51, 2002.

Free Software Foundation, http://gcc.gnu.org/onlinedocs/gecint/. The GCC Internals,

1.2 edition, 2007.

Lars Marius Garshol. Bnf and ebnf: What are they and how do they work?

http://www.garshol.priv.no/download/text/bnf.html.

A.K. Ghosh, T. O’Connor, and G. McGraw. An automated approach for identifying
potential vulnerabilities in software. Security and Privacy, 1998. Proceedings. 1998

IEEE Symposium on, pages 104-114, 3-6 May 1998.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated ran-
dom testing. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, pages 213-223, New York, NY,

USA, 2005. ACM Press.

Michael Goulde. Open source becoming mission-critical in north america and eu-
rope. http://www.forrester.com/Research/Document/Excerpt/0,7211,38866,00.html,

September 2006.

The SUIF Group. Suif compiler system. http://suif.stanford.edu/ (Date of Access:

August 30, 2007).

R. Hadjidj. Analyse et validation formelle des systemes temps reel. PhD thesis, Ecole

Polytechnique, Montreal, Canada, 2006.

111

[49]

[50]

[51]

[52]

(53]

[54]

William G. J. Halfond and Alessandro Orso. Combining static analysis and runtime
monitoring to counter sql-injection attacks. In WODA ’05: Proceedings of the third
international workshop on Dynamic analysis, pages 1-7, New York, NY, USA, 2005.

ACM Press.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata
theory, languages, and computation. Pearson/Addison Wesley, Boston, 3rd edition,

2007.

Clinton Jeffery, Wenyi Zhou, Kevin Templer, and Michael Brazell. A lightweight
architecture for program execution monitoring. In PASTE ’98: Proceedings of the
1998 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools

and engineering, pages 67-74, New York, NY, USA, 1998. ACM Press.

E. Eugene Schultz Jr., David S. Brown, and Thomas A. Longstaff. Responding to
computer security incidents. Technical report, Lawrence Livermore National Labora-

tory, Livermore, CA, July 1990.

Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh
Viswanathan. Computational analysis of run-time monitoring: Fundamentals of java-

mac. Electronic Notes in Theoretical Computer Science, 70(4):1-15, 2002/12.

Moonjoo Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and O. Sokol-
sky. Formally specified monitoring of temporal properties. In Formally specified

monitoring of temporal properties, pages 114—-122, 1999.

112

[55] James C. King. Symbolic execution and program testing. Communications of the

ACM, 19(7):385-394, 1976.

[56] Klocwork. Klockwork wins infoworld 2007 technology of the year award.
http:/fwww.klocwork.com/company/releases/01_09_07.asp. (Date of Access:

September 2, 2007).

[57] Dieter Kranzlmuller. Event graph analysis for debugging massively parallel programs.

http://www.gup.uni-linz.ac.at/ dk/thesis/html/thesis.html, 2000.

[58] L.Lamport. Proving the correctness of multiprocess programs. Software Engineering,

IEEFE Transactions on, SE-3(2):125-143, 1977.

[59] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: enforcement mecha-
nisms for run-time security policies. International Journal of Information Security,

V4(1):2-16, 2005. M3: 10.1007/s10207-004-0046-8.

[60] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc, San

Francisco, CA, USA, 1996.

[61] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In PODC ’87: Proceedings of the sixth annual ACM Symposium on Prin-
ciples of distributed computing, pages 137-151, New York, NY, USA, 1987. ACM

Press.

[62] D. Mahrenholz, O. Spinczyk, and W. Schroder-Preikschat. Program instrumenta-

tion for debugging and monitoring with AspectC++. Object-Oriented Real-Time

113

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Distributed Computing, 2002. (ISORC 2002). Proceedings. Fifth IEEE International

Symposium on, pages 249-256, 2002.

B. Miller, D. Koski, C. Lee, V. Maganty, A. Natarajan, and J. Steidl. Fuzz revisited:
A re-examiniation of the reliability of UNIX utilities and services. Technical Report

1268, University of Wisconsin-Madison, May 1998.

Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability

of unix utilities. Commun. ACM, 33(12):32-44, 1990.

George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. CCured: type-safe retrofitting of legacy software. ACM Transactions on

Programming Language and Systems, 27(3):477-526, 2005.

State of California. California performance review 2004.

http://cpr.ca.gov/report/cprrpt/issrec/stops/it/so10.htm.

U.S. Department of Justice. Creator of melissa computer virus sentenced to 20 months
in federal prison. http://www.justice.gov/criminal/cybercrime/melissaSent.htm, May

2002.

opensource.org. The open source definition, July 2006. http://www.opensource.org/

(Date of Access: August 17, 2007).

Stephen Ostermiller. Syntax highlighting library. http://ostermiller.org/syntax/.

Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge,

Mass., 2002.

114

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

G. Ho C. Deane P.J. Mucci, S. Browne. Perfapi - performance data standard and api,

1999. http://icl.cs.utk.edu/projects/papi/ (Date of Access: August 20, 2007).

Charles W. Rapp. The State Machine Compiler. http://smc.sourceforge.net/ (Date of

Access: September 2, 2007).

M. Ronsse and K. De Bosschere. Jiti : Tracing memory references for data race de-
tection. In E. H. D’Hollander, G. R. Joubert, F. J. Peters, and U. Trottenberg, editors,
Parallel Computing: Fundamentals, Applications and New Directions, Proceedings
of the Conference ParCo’97, 19-22 September 1997, Bonn, Germany, volume 12,

pages 327-334, Amsterdam, 1998. Elsevier, North-Holland.

Er Ro Rs. Purify: Fast detection of memory leaks and access errors.

http://citeseer.ist.psu.edu/291378.html.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-
derson. Eraser: a dynamic data race detector for multithreaded programs. ACM Trans.

Comput. Syst., 15(4):391-411, 1997.
Herbert Schildt. C: the complete reference. Osborne/McGraw-Hill, Berkeley, 2000.

Fred B. Schneider. Enforceable security policies. ACM Trans.Inf.Syst.Secur., 3(1):30—

50, 2000.

Benjamin Schwarz, Hao Chen, David Wagner, Jeremy Lin, Wei Tu, Geoff Morrison,
and Jacob West. Model checking an entire linux distribution for security violations.
In ACSAC ’05: Proceedings of the 21st Annual Computer Security Applications Con-
ference, pages 13-22, Washington, DC, USA, 2005. IEEE Computer Society.

115

[79] Secure Software. Rough auditing tool for security (rats).

http://www.fortifysoftware.com/security-resources/rats.jsp.

[80] Amitabh Srivastava and Alan Eustace. Atom: a system for building customized pro-

gram analysis tools. SIGPLAN Not., 39(4):528-539, 2004.

[81] David Stout. "youth sentenced in government hacking case". The New York Times,

September 2000.

[82] Computer Emergency Response Team. http://www.cert.org/stats/. (Date of Access:

August 14, 2007).

[83] Jay-Evan J. Tevis. Automatic detection of software security vulnerabilities in exe-

cutable program files. PhD thesis, Auburn, AL, USA, 2005. Director-John A. Hamil-

ton, Jr.

[84] Jay-Evan J. Tevis and John A. Hamilton. Methods for the prevention, detection and
removal of software security vulnerabilities. In ACM-SE 42: Proceedings of the 42nd
annual Southeast regional conference, pages 197-202, New York, NY, USA, 2004.

ACM Press.

[85] SD Times. http://www.sdtimes.com/static/sdtimes100_07_04.html. (Date of Access:

August 14, 2007).

[86] Syrine Tlili and Mourad Debbabi. A novel type and alias analysis for ¢ safety and

security. (Unpublished).

116

[87] John Viega and Gary McGraw. Building secure software : how to avoid security

problems the right way. Addison-Wesley, Boston, 2002.

[88] Mahesh Viswanathan. Foundations for the run-time analysis of software systems. PhD
thesis, Philadelphia, PA, USA, 2000. Supervisor-Sampath Kannan and Supervisor-

Insup Lee.

[89] J. Voas. Fault injection for the masses. Computer, 30(12):129-130, 1997.

[90] J. Voas, A. Ghosh, G. McGraw, F. Charron, and K. Miller. Defining an adaptive
software security metric from a dynamic software failure tolerance measure. In Com-
puter Assurance, 1996. COMPASS 96, 'Systems Integrity. Software Safety. Process

Security’. Proceedings of the Eleventh Annual Conference on, pages 250-263, 1996.

[91] David Walker. A type system for expressive security policies. In POPL *00: Proceed-
ings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 254-267, New York, NY, USA, 2000. ACM Press.

[92] James A. Whittaker and Herbert H. Thompson. How to break software security :

effective techniques for security testing. Pearson/Addison Wesley, Boston, 2004.

[93] Junfeng Yang, Ted Kremenek, Yichen Xie, and Dawson Engler. Meca: an extensible,
expressive system and language for statically checking security properties. In CCS

’03: Proceedings of the 10th ACM conference on Computer and communications

security, pages 321-334. ACM Press, 2003.

117

[94] Michael Young and Richard N. Taylor. Rethinking the taxonomy of fault detection
techniques. In ICSE ’89: Proceedings of the 11th international conference on Soft-

ware engineering, pages 53—-62, New York, NY, USA, 1989. ACM Press.

118

Appendix A

Compiler Implementation for

Instrumentation Guide Language

This appendix presents the grammar of the instrumentation guide language used by our

GCC extension. Below is the grammar specified in EBNF [43] form.

Grammar of the Instrumentation Guide Language

Y L et
* PARSER RULES
S e e e e ——————— e */
prog := stat+ ;
stat
:= statFuncCall ENDOFSTMT
| statVarUse ENDOFSTMT
| statVarDecl ENDOFSTMT
| statOutOfScope ENDOFSTMT
‘
statFuncCall

:= ’inscope’ scopeld flexibleInstrPoint
fcallfunc’ LPAREN normalId RPAREN
"inject’ ’'"’ ID ’'"’ exposeArgs exposeReturn

119

statVarUse
:= flexibleInstrPoint varUseOptions LPAREN varlIdString RPAREN

Iinjectl rwrs ID rwnr

~

statvVarDecl
:= "after’ ’declvar’ LPAREN varIdString RPAREN
linjectl rnr ID rnr

statOutO£fScope
:= '"before’ ’'exitfunc’ LPAREN normalld RPAREN
’injectl rnrs ID rnr
| 'before’ ’'exitscope’ LPAREN varIdString RPAREN
linjectl rwnrs ID rns

~e

scopeld
= rnr ID rnrs
| WILDCHAR

.
14

flexiblelInstrPoint
:= "before’
i rafter’

.
r

normalId
:= rmws ID rnrs
| WILDCHAR

.
14

exposeArgs
:= ’'exposeargs’
| ’"noexposeargs’
;

exposeReturn

:= ’exposereturn’
| "noexposereturn’

.
1

varUseOptions
:= ’'readvar’
| fwritevar’
| ’'derefptr’
14

varldString
:= fileNameString DBLCOLON LINENUM DBLCOLON varId

.
7

varld

120

o= I M1 o=Tp W/

| WILDCHAR
;
fileNameString
:= '"/ FILENAME "’
| WILDCHAR
H
A
* LEXER RULES
A e e e e e */
FILENAME := (/07..797[’a’..72' ['A/ .72/ |"_"|".")+ "7 ('c’'|'C");
1D = (fa’..'z |[TAT LT)

(Pa’ ..tz [TAT LT T0N L9 Y
DEREFID := ('a’..’z’ |'A’.."2"|"'_")
AR TS RS AT T - T N A T R

DBLCOLON := ’::’;
ENDOFSTMT:= ’;’;
WS s= (/7 1'\r’ [’\t’ |"\u000C’ |’\n’) {Schannel=HIDDEN;} ;

LPAREN = ("
RPAREN =),
WILDCHAR := "x’;
LINENUM := ('0’'..79")+;

121

Appendix B

Rough GIMPLE Grammar

This appendix presents the rough GIMPLE grammar [42].

The Grammar

function : FUNCTION_DECL
DECL_SAVED_TREE -> compound-stmt

compound-stmt: STATEMENT_LIST
members -> stmt

stmt : block

| if-stmt

| switch-stmt
| goto-stmt

| return-stmt
| resx-stmt

| label-stmt

| try-stmt

| modify-stmt
| call-stmt

block : BIND_EXPR
BIND_EXPR_VARS -> chain of DECLs
BIND_EXPR_BLOCK -> BLOCK
BIND_EXPR_BODY -> compound-stmt

if-stmt : COND_EXPR

op0 -> condition
opl -> compound-stmt

122

op2 -> compound-stmt

switch-stmt : SWITCH_EXPR
op0 -> val
opl -> NULL
op2 -> TREE_VEC of CASE_LABEL_EXPRs
The CASE_LABEL_EXPRs are sorted by CASE_LOW,
and default is last.

goto-stmt : GOTO_EXPR
op0 -> LABEL_DECL | val

return—-stmt : RETURN_EXPR
op0 -> return-value

: NULL
| RESULT_DECL
| MODIFY_EXPR
op0 -> RESULT_DECL

return-value

opl -> 1lhs
resx-stmt : RESX_EXPR
label-stmt : LABEL_EXPR

op0 -> LABEL_DECL

try-stmt : TRY_CATCH_EXPR
op0 -> compound-stmt
opl -> handler
| TRY_FINALLY_EXPR
op0 -> compound-stmt
opl -> compound-stmt

handler : catch-seq
| EH_FILTER_EXPR
| compound-stmt
catch-seq : STATEMENT_LIST

members -> CATCH_EXPR

modify-stmt : MODIFY_EXPR

op0 -> lhs
opl -> rhs
call-stmt : CALL_EXPR

op0 -> val | OBJ_TYPE_REF
opl -> call-arg-list

call-arg-list: TREE_LIST
members -> lhs | CONST

addr-expr-arg: ID
| compref

123

addressable

.

with-size—~arg:

indirectref

lhs

min-lval

bitfieldref

compref

..

inner-compref:

condition

addr-expr-arg
indirectref

addressable
call-stmt

INDIRECT_REF
opl -> val

addressable
bitfieldref
WITH_SIZE_EXPR
op0 -> with-size-arg
opl -> wval

ID
indirectref

BIT_FIELD_REF
op0 -> inner-compref
opl -> CONST
op2 -> val

inner-compref
TARGET_MEM_REF

op0 -> ID

opl -> val

op2 -> val

op3 —-> CONST

op4 —> CONST
REALPART_EXPR

op0 —-> inner-compref
IMAGPART_EXPR

op0 -> inner-compref

min-lval
COMPONENT_REF
op0 -> inner-compref
opl -> FIELD_DECL
op2 -> val
ARRAY_REF
op0 -> inner-compref
opl -> val
op2 -> val
op3 -> val
ARRAY_RANGE_REF
op0 -> inner-compref
opl -> val
op2 —-> val
op3 -> val
VIEW_CONVERT_EXPR
op0 -> inner-compref

val

124

| RELOP
op0 -> val
opl -> wval

val : ID
| invariant ADDR_EXPR
opQ0 —-> addr-expr-arg

{ CONST
rhs : lhs
| CONST
| call-stmt
| ADDR_EXPR
op0 —-> addr-expr-arg
| UNOP
op0 -> val
| BINOP
op0 -> val
opl -> val
| RELOP
op0 -> val
opl -> val
| COND_EXPR

op0 -> condition
opl -> val
op2 -> val

125

Appendix C

Source Codes Used in Experiment 1

This appendix lists the source codes used in Experiment 1 - Checking Memory Manage-

ment Vulnerabilities.

C.1 Security Property Specification for Memory Manage-

ment Vulnerabilities

C.1.1 MemorySM.sm: State Machine for States of Program Memory

%{
// a state machine models the state transition of dynamic momory chunck
%}

%start MemoryChunck: : START
%class MemorySM
%header MemorySM.h
$map MemoryChunck
%%
START
{
allocate
ALLOCATED

126

{ OkeyTransition(); }

Default
Error
{ UnknownError(); }

ALLOCATED
{
doWrite (addr: unsigned int)
[ctxt.IsValidAddress (addr) == true]
nil
{ SetInitializationStatus (addr, true); }

doWrite (addr: unsigned int)
[ctxt.IsValidAddress (addr) == false]
Error

{ OutOfBoundaryError (addr); }

doRead (addr: unsigned int)

[ctxt.IsValidAddress (addr) == true
&& ctxt.GetInitializationStatus(addr) == true]
nil

{OkeyTransition(); }

doRead(addr: unsigned int)
[ctxt.IsValidAddress (addr) == false]
Error

{ OutOfBoundaryError (addr); }

doRead (addr: unsigned int)
[ctxt.GetInitializationStatus (addr) == false]
Error

{ ReadUninitializedError(addr); }

doDeallocate (addr: unsigned int)
[ctxt.IsStartAddress (addr) == true]
DEALLOCATED

{ OkeyTransition(); }

doDeallocate (addr: unsigned int)
[ctxt.IsStartAddress (addr) == false]
Error

{ FreeInvalidMemory (addr); }

Default
Error
{ UnknownError(); }

}
DEALLOCATED

{
doDeallocate (addr: unsigned int)

127

[ctxt.IsStartAddress (addr) == true]
Error
{ DoubleFreeingError (addr); }

doDeallocate (addr: unsigned int)
[ctxt.IsStartAddress (addr) == false]
Error

{ FreelInvalidMemory (addr);

Default
Error
{ UnknownError(); }

Error
{
Default
Error
{ UnknownError(); }

f—

oe
oe

C.2 Vulnerable C Programs Evaluated in Experiment 1

C.2.1 Program1

#include <stdio.h>

int main(int argc, char *argv[])
{

int i;

const int BUFSIZE = 10;

char staticBuf[BUFSIZE];

// decrementing array index "i"
// within the loop result in
// out-of-boundary array access
for (i = 0; i < BUFSIZE; ++i)
{

i —-= 2;

staticBuf[i] = 1i;
}

return 0;

128

C.2.2 Program 2

#include <stdio.h>

struct node

{

struct nodex* next_;

};

void InitNode (struct nodex n)
{
n->next_ = 0;

}i

void Cleanup (struct nodexx n)
{
if ((xn)->next_)
{
free (& (*n) ~>next_);

}

free(*n);

}bi

int main(int argc, char xargv[])
{
struct nodex nl =
(struct nodex)malloc (sizeof (struct node));
struct nodex n2 =
(struct nodex*)malloc (sizeof (struct node));

InitNode (nl);
InitNode (n2);

n2->next_ = nl;
nl->next__ n2;

// circular reference between nl and n2
// upon Cleanup n2, double-freeing occurs
Cleanup (&n2);

return 0;

C.2.3 Program 3

#include <stdio.h>

void wrapped_read(charx buf, int count)
{

fgets (buf, count, stdin);
}

129

void TaintedAccess (unsigned int dst_len)
{

char bufl(12];
char buf2(12];
char* dst = (charx*)malloc(dst_len);

wrapped_read (bufl, sizeof (bufl));
wrapped_read (buf2, sizeof (bufl));

// possible buffer overflow
// depending on user input from "len"

sprintf (dst, "%s-%s\n", bufl, buf2);

free(dst);
}

int main(int argc, char xargvl[])
{

unsigned int len;

scanf ("%d", &len);

TaintedAccess (len);

return 0;

C.2.4 Program 4

#include <stdio.h>

int main(int argc, char xargv([])
{

unsigned int bufsize = 0;

printf ("please specify buffer size: ");
scanf ("%d", &bufsize);

const charx bufl = "Hello world!";
charx buf2 = (charrx)malloc (bufsize);
if (buf2)

{
// strcpy without checking destination buffer length
// in this case buf2 is dynamically determined
// buffer overflow may occur if user input of bufsize
// is too small
strcpy (buf2, bufl);

130

free (buf2);

return 0;

C.2.5 Program S

#include <stdio.h>

int main(int argc, char *argv[])

{

unsigned int bufsize = 0;

printf ("please specify buffer size: ");
scanf ("%d", &bufsize);

const char* bufl = "Hello world!";
char* buf2 = (char*)malloc(bufsize);
bufsize = bufsize * 2 + 1;

// free statement in this if block never
// executes due its previous line
// this program is intentionally written to
// be FREE of double-freeing vulnerability
if (bufsize % 2 == ()
{

free (buf2);
}

free (buf2);

return 0;

C.2.6 Program 6

#include <stdio.h>

int main(int argc, char xargv(])

{

/%

buffer[0] = "h’;

buffer([l] = ’"e’;

buffer[2] = 71’;

buffer[3] = 71’;

buffer[4] = "o0’;

buffer[5] = "\0’;
*/

131

char buffer[] = "hello";
buffer[5] = 'A’;

// depending on the platform and compiler
// the following statement may print

// an overflowed buffer

printf ("buffer string is: %s\n", buffer);

return 0;

132

