113 research outputs found

    The Trends and Factors in the presentation of athletes' media images

    Get PDF
    With the media explosion of Ailing Gu and other athletes at the Beijing Winter Olympics, the topic of the media image of gold medal athletes had attracted much academic attention again. The current study reviewed the media image of gold medalists from two aspects, the developing trends and the factors including communication medium, subjects, and audience. The results showed that the media image of athletes showed a trend of diversified and commercialized content, which was closely related to the more diverse communication platforms, rich communication subjects, and wide audience in the new media era. Communicators message filter, a strong sense of social responsibility for the athletes, and a better media literate of the audience were necessary to cope with the problems that appear during its development. These findings were critical for better understanding China's economic and social development and examining ideas and methods for improving public perception of sports culture

    Insights into the metabolic profiling of Polygonati Rhizoma fermented by Lactiplantibacillus plantarum under aerobic and anaerobic conditions using a UHPLC-QE-MS/MS system

    Get PDF
    IntroductionPolygonati Rhizoma is a multi-purpose food with medicinal uses. Fermentation of Polygonati Rhizoma by lactic acid bacteria could provide new insights into the development of Polygonati Rhizoma products.MethodsIn this study, Lactiplantibacillus plantarum was fermented with Polygonati Rhizoma extracts in a bioreactor under aerobic and anaerobic conditions with pH and DO real-time detection. Metabolic profiling was determined by UHPLC-QE-MS/MS system. Principal component analysis and orthogonal partial least-squares discriminant analysis were used to perform multivariate analysis.ResultsA total of 98 differential metabolites were identified in broth after fermentation, and 36 were identified between fermentation under aerobic and anaerobic conditions. The main metabolic pathways in the fermentation process are ABC transport and amino acid biosynthesis. Most of the compounds such as L-arginine, L-aspartic acid, leucine, L-lysine, citrate, inosine, carnitine, betaine, and thiamine were significantly increased during fermentation, playing a role in enhancing food flavor. Compared with anaerobic fermentation, aerobic conditions led to a significant rise in the levels of some compounds such as valine, isoleucine, and glutamate; this increase was mainly related to branched-chain amino acid transaminase, isocitrate dehydrogenase, and glutamate dehydrogenase.DiscussionAerobic fermentation is more beneficial for the fermentation of Polygonati Rhizoma by L. plantarum to produce flavor and functional substances. This study is the first report on the fermentation of Polygonati Rhizoma by L. plantarum and provides insights that would be applicable in the development of Polygonati Rhizoma fermented products

    Hybrid RFF Identification for LTE Using Wavelet Coefficient Graph and Differential Spectrum

    Get PDF
    The growing popularity of 4 G/5 G mobile devices has led to an increase in demand for wireless security. Radio frequency fingerprint (RFF) technique is an emerging approach for device authentication using intrinsic and unique hardware impairments. In this paper, we propose an RFF-based method to identify rogue/unknown long term evolution (LTE) terminals. This is achieved by combining wavelet transform (WT) coefficient graphs and differential spectrum. The proposed method involves extracting 48 levels of wavelet coefficients from the transient power-off of the physical random access channel (PRACH) signal and representing them in a WT graph. The steady-state part of the PRACH signal after a frequency domain differential processing between the adjacent spectrum is extracted. To detect unknown attack devices, an identification scheme based on an autoencoder (AE) is designed. Two different AE network structures are designed based on the proposed features, and a hybrid identification structure is proposed. An experimental evaluation system is set up with seven mobile phones from three categories and one universal software radio peripheral (USRP) software-defined radio (SDR) platform. Training and testing datasets are collected under different conditions such as location, working times, and dates. Experimental results show that rogue devices can be identified with an accuracy up to 98.84% for different categories and 90.27% for different individuals

    Authorized and Rogue LTE Terminal Identification Using Wavelet Coefficient Graph with Auto-encoder

    Get PDF
    The wide popularity of 4G/5G mobile terminals increase the requirements of wireless security. Radio frequency fingerprint (RFF) technology can strengthen 4G/5G air interface accessing security at the physical layer. In this paper, a wavelet transform (WT) coefficient graphs RFF extraction with auto-encoder (AE) based rogue terminal detection scheme is proposed. At first, WT coefficients at 48 scales are extracted from the transient-power-off part of LTE physical random access channel (PRACH) preamble. Then, an AE network structure aimed for 2D WT coefficient graph is designed for rogue terminal detection. We successfully distinguish 7 mobile phones and 1 USRP under the proposed mechanism, where the authorized terminals from the same manufacturer can be identified with an accuracy of 90.08%. In addition, extensive experiments are carried out at LOS and NOLS scenarios, respectively, the proposed LTE identification scheme has demonstrated robustness in dynamic environments

    Neutrophil heterogeneity and aging: implications for COVID-19 and wound healing

    Get PDF
    Neutrophils play a critical role in the immune response to infection and tissue injury. However, recent studies have shown that neutrophils are a heterogeneous population with distinct subtypes that differ in their functional properties. Moreover, aging can alter neutrophil function and exacerbate immune dysregulation. In this review, we discuss the concept of neutrophil heterogeneity and how it may be affected by aging. We then examine the implications of neutrophil heterogeneity and aging for COVID-19 pathogenesis and wound healing. Specifically, we summarize the evidence for neutrophil involvement in COVID-19 and the potential mechanisms underlying neutrophil recruitment and activation in this disease. We also review the literature on the role of neutrophils in the wound healing process and how aging and neutrophil heterogeneity may impact wound healing outcomes. Finally, we discuss the potential for neutrophil-targeted therapies to improve clinical outcomes in COVID-19 and wound healing

    A Conformation-Sensitive Monoclonal Antibody against the A2 Domain of von Willebrand Factor Reduces Its Proteolysis by ADAMTS13

    Get PDF
    The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and heparin sulfate, which accelerate the cleavage of VWF. Conversely, thrombospondin-1 decreases the rate of VWF proteolysis by ADAMTS13 by competing with ADAMTS13 for the A3 domain of VWF. To investigate whether murine monoclonal antibodies (mAbs) against human VWF affect the susceptibility of VWF to proteolysis by ADAMTS13 in vitro, eight mAbs to different domains of human VWF were used to evaluate the effects on VWF cleavage by ADAMTS13 under fluid shear stress and static/denaturing conditions. Additionally, the epitope of anti-VWF mAb (SZ34) was mapped using recombinant proteins in combination with enzyme-linked immunosorbent assay and Western blot analysis. The results indicate that mAb SZ34 inhibited proteolytic cleavage of VWF by ADAMTS13 in a concentration-dependent manner under fluid shear stress, but not under static/denaturing conditions. The binding epitope of SZ34 mAb is located between A1555 and G1595 in the central A2 domain of VWF. These data show that an anti-VWF mAb against the VWF-A2 domain (A1555-G1595) reduces the proteolytic cleavage of VWF by ADAMTS13 under shear stress, suggesting the role of this region in interaction with ADAMTS13

    Identification and Functional Analysis of a Novel von Willebrand Factor Mutation in a Family with Type 2A von Willebrand Disease

    Get PDF
    von Willebrand factor (VWF) is essential for normal hemostasis. VWF gene mutations cause the hemorrhagic von Willebrand disease (VWD). In this study, a 9-year-old boy was diagnosed as type 2A VWD, based on a history of abnormal bleeding, low plasma VWF antigen and activity, low plasma factor VIII activity, and lack of plasma high-molecular-weight (HMW) VWF multimers. Sequencing analysis detected a 6-bp deletion in exon 28 of his VWF gene, which created a mutant lacking D1529V1530 residues in VWF A2 domain. This mutation also existed in his family members with abnormal bleedings but not in >60 normal controls. In transfected HEK293 cells, recombinant VWF ΔD1529V1530 protein had markedly reduced levels in the conditioned medium (42±4% of wild-type (WT) VWF, p<0.01). The mutant VWF in the medium had less HMW multimers. In contrast, the intracellular levels of the mutant VWF in the transfected cells were significantly higher than that of WT (174±29%, p<0.05), indicating intracellular retention of the mutant VWF. In co-transfection experiments, the mutant reduced WT VWF secretion from the cells. By immunofluorescence staining, the retention of the mutant VWF was identified within the endoplasmic reticulum (ER). Together, we identified a unique VWF mutation responsible for the bleeding phenotype in a patient family with type 2A VWD. The mutation impaired VWF trafficking through the ER, thereby preventing VWF secretion from the cells. Our results illustrate the diversity of VWF gene mutations, which contributes to the wide spectrum of VWD
    corecore