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Abstract—The growing popularity of 4G/5G mobile devices
has led to an increase in demand for wireless security. Radio
frequency fingerprint (RFF) technique is an emerging approach
for device authentication using intrinsic and unique hardware
impairments. In this paper, we propose an RFF-based method
to identify rogue/unknown long term evolution (LTE) terminals.
This is achieved by combining wavelet transform (WT) coefficient
graphs and differential spectrum. The proposed method involves
extracting 48 levels of wavelet coefficients from the transient
power-off of the physical random access channel (PRACH) signal
and representing them in a WT graph. The steady-state part
of the PRACH signal after a frequency domain differential
processing between the adjacent spectrum is extracted. To detect
unknown attack devices, an identification scheme based on
an autoencoder (AE) is designed. Two different AE network
structures are designed based on the proposed features, and
a hybrid identification structure is proposed. An experimental
evaluation system is set up with seven mobile phones from three
categories and one universal software radio peripheral (USRP)
software-defined radio (SDR) platform. Training and testing
datasets are collected under different conditions such as location,
working times, and dates. Experimental results show that rogue
devices can be identified with an accuracy up to 98.84% for
different categories and 90.27% for different individuals.

Index Terms—Radio frequency fingerprint, wavelet transform,
spectrum, autoencoder, LTE.
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HE proliferation of radio frequency communication de-

vices has triggered massive connectivity of voice and
data worldwide. This has increased wireless user exposure
and driven the need for improved security measures [1], [2].
Traditional solutions usually use cryptographic mechanisms
to provide protection for the integrity and confidentiality of
communication data. These methods rely on security protocols
and a common key between the transmitter and the receiver.
Public key cryptography (PKC) is popular to share the crypto-
graphic key but is threatened by quantum computers because
PKC relies on computationally-expensive mathematical oper-
ations [3].

The global 4G long-term evolution (LTE) users have soared
from 9 million to 4.7 billion from 2011 to 2021 [4]. The 5G
NR technology is an extension of 4G LTE technology, with
many common physical layer designs [5], [6]. The LTE stan-
dard specifies authentication mechanisms for users and base
stations by using authentication and key agreement (AKA)
protocols. Although LTE system has comprehensive protocols
design for security [7], [8], there have still been attacks on LTE
systems [9]-[12]. Fei and Wang revealed two vulnerabilities
that could lead to denial of service (DoS) and leak a user’s in-
ternational mobile subscriber identity (IMSI) [9]. Lichtman et
al. proposed a specific physical channel-oriented attack in [10],
which requires less transmission power and is more efficient
than the traditional method of jamming. In [11], Tan et al.
proposed a data-plane signaling attack, which can cause DoS
threats in cellular networks. Erni et al. proposed a man-in-the-
middle (MITM) attack during the LTE radio resource control
(RRC) connection process, which can cause either large-scale
DoS or privacy leakage [12]. Most of the above-mentioned
attacks were implemented at the upper layers. The main idea
behind these attacks is to exploit vulnerabilities in the design
of LTE protocols to carry out the attacks.

It is promising to design non-cryptographic-based solutions
as complements in the physical layer. Radio frequency finger-
print (RFF) is such an approach for wireless device authen-
tication. Due to the inevitable variation in the manufacturing
process, there are innate differences in analog components of
wireless transceiver chains, which are difficult to be imitated.
These hardware imperfections are embedded in the transmitted
signals, which can be extracted by a receiver [13]-[15].
RFF has good characteristics of tamper resistance, which can
well provide a reliable mechanism for the authentication of
radio devices. RFF identification has been widely studied
with Wi-Fi [16]-[18], LoRa [19]-[22], ZigBee [23]-[26],
Bluetooth [27], ADS-B [28], [29] etc.

The research on RFF in cellular communication systems
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mainly focuses on identifying the RFF of base stations, which
are referred to as evolved Node B (eNB) in LTE terminology.
For example, Demers and St-Hilaire collected LTE signals of
real base stations by a high-performance spectrum analyzer at
different locations and extracted 13 signal characteristic coef-
ficients. The base stations were identified by support vector
machine (SVM) classifier [30]. The RFF-based base station
identification could be primarily used for identifying fake base
stations [31], [32]. However, there has been limited research
on RFF for cellular user equipment (UE). A significant number
of malicious network access attempts originated from UEs
can result in DoS attacks on cellular network eNB. In the
physical layer of 4G/5G LTE systems, the physical random
access channel (PRACH) is the first message sent by a UE
when connecting to the eNB [5]. The PRACH signal does
not contain any identity information. Therefore, it might be
possible that the malicious UEs flood the PRACH to eNB
to launch PRACH spoofing attacks [10], [33]. In this case,
physical layer DoS attacks become possible. A large number
of invalid PRACH preambles will greatly consume the upper-
layer resources of the eNB, resulting in network congestions
that make the network unable to respond to the network access
requests from legitimate UEs.

Therefore, RFF identification based on LTE PRACH signals
will be of great significance. Li et al. used 10 different
universal software radio peripheral (USRP) devices to emulate
LTE terminals and achieved identification of 10 terminals
based on PRACH signals [34]. It should be noted that there
are significant differences in terms of hardware specifications
between USRP-emulated LTE devices and real LTE terminals
that make its applicability unclear. Moreover, in the PRACH
accessing process, UE will compensate their carrier frequency
offset based on the physical broadcast channel (PBCH) signal
from the eNB, thereby reducing the differentiation of their
RFF characteristics and complicating the RFF identification
process. In [35], 6 real LTE terminal signals were collected,
and a multi-channel convolutional neural network (MCCNN)
was designed based on the extracted differential constellation
trace figure (DCTF) features for LTE terminal identifications.
Qiu et al. extracted residual transient segment (RTS) features
from the varying PRACH preambles of real LTE eNB and
classified LTE mobile phones from 5 different brands suc-
cessfully [36]. In summary, most existing research on LTE
terminal identification was applicable for fixed observation
time and sampling location, and the LTE terminals considered
for identification were chosen from different brands. LTE
terminals used are also of various brands. The identification of
LTE terminals of the same brands was not investigated yet in
the literature. In reality, multiple terminals of the same brands
may be associated with the same network eNB, which will
increase the identification difficulty.

Most of the RFFI studies focus on the multi-class clas-
sification using convolutional neural network (CNN) [19],
[22], [23], [37], long short-term memory (LSTM) [20], [22],
[37], multilayer perceptron (MLP) [19], [21], [22], and trams-
former [37]. The work in [19] classified 22 LoRa devices
by MLP and CNN. Rogue device identification is another
set of RFFI works that can detect malicious/unknown de-

vices [17], [18], [38]. Hanna et al. adopted a few methods
to detect unknown devices using e.g., autoencoder (AE) and
openMax [18]. And unsupervised learning is more applicable
in these scenarios because it is not easy to involve rogue
devices in the training stage. However, detecting rogue LTE
terminals based on RFF has not been explored yet.

According to the segments of the signal, the main RF
features can be categorized into transient parts and steady-state
parts [16]. Transient parts are produced when the power of the
transmission raises from zero to the specified working power
or in the reverse process. Steady-state parts are present when
the transmitter is in stable mode. The wavelet transform (WT)
is a mathematical technique that provides a time-frequency
representation of a signal, allowing for the adjustment of time-
frequency resolution. Therefore, the WT can be regarded as a
time-frequency analysis method with a flexible window, which
offers an enhanced ability to analyze non-stationary signals.
Hippenstiel and Payal transformed the transient signals of four
transmitters into the wavelet domain, extracted the wavelet
coefficients under three WT scales in turn, and used the peak
values to obtain the Euclidean distance for classification [39].
Ho et al. extracted 4 WT scales of wavelet coefficients and
applied the histogram to measure the frequency of different
energy occurrences at each WT scale. They classified code-
division multiple access (CDMA) signals and global system
for mobile communications (GSM) signals according to a
selected threshold. The accuracy can remain 100% even at
low SNR [40]. Though showing a strong capability in signal
classification, WT has not been considered in the RFF feature
extraction for LTE devices.

In this paper, we proposed a hybrid RFF identification
method using the transient and steady-state parts of the LTE
PRACH signal. We conduct a comprehensive experimental
evaluation under three environmental variables, namely sam-
pling dates, sampling locations, and working hours. The main
contributions of our work are as follows:

o A hybrid RFF feature extraction method that involves
both transient and steady-state features is proposed for
LTE devices. The transient features of PRACH signals
are extracted by WT and the steady parts are processed
by the differential fast Fourier transform (D-FFT).

o A hybrid AE detector is designed to detect rogue ter-
minals based on the one-dimensional (1D) differential
spectrum feature and two-dimensional (2D) WT feature.
The AE can effectively fuse the features of different
dimensions. The detector has environmental robustness
and high discrimination.

o We have carried out extensive experiments by construct-
ing a signal collection system and sampling real LTE sig-
nals under different times, locations, and working hours.
The performance of the proposed method is intensively
evaluated in the actual environment. The identification
accuracies are up to 98.84% for identifying different cat-
egories and 90.27% for identifying different individuals.

In our previous work [41], we identified different LTE de-
vices based on wavelet coefficient graphs and AE network.
Through experiments conducted in a fixed position, we have
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found that the WT feature can achieve a higher identification
accuracy compared to the D-FFT feature. This paper advances
the research by combining WT and D-FFT features from
different dimensions at different signal parts and building a
dataset under different environmental variables. This approach
improves the identification accuracy and proves the robustness
of our method through comprehensive experiments in two
typical scenarios.

The rest of this paper is organized as follows. Section II
introduces the structure and properties of the LTE PRACH
signal. Section III introduces the research problems and
presents the proposed solutions. The signal preprocessing, RFF
feature extraction, and hybrid AE design are presented in
Sections IV, V, and VI, respectively. Section VII provides
the experimental setup and analyzes the results in different
experimental scenarios. Section VIII concludes the paper.

II. LTE PRACH PRIMER

In LTE systems, a PRACH signal is sent by a user
equipment (UE) to an eNB for establishing RRC connection,
obtaining uplink synchronization, and requesting resources for
future interaction. The data transmission is performed after
the radio resource control (RRC) connection. Random access
occurs when UE starts uplink time synchronization or the
handover between cells [42]. Malicious users can execute
a flooding attack in this process [33]. Due to the limited
spectrum resources, the massive number of devices causes an
overload in the random access channel (RACH) that, in turn,
decreases the overall performance of the LTE systems [43].

In LTE systems, the eNB broadcasts the parameters of the
access signal through the physical broadcast channel (PBCH).
The UE randomly selects one of the 64 PRACH signals for
access based on the parameters from PBCH. Both eNB and
UE can generate standard PRACH signals from the selected
parameters. The LTE PRACH signal utilizes 6 resource blocks
(RBs), occupying a bandwith of 1.08 MHz. The carrier fre-
quency of the PRACH signal is also fixed from the PBCH
parameters. The value of rootSequencelndex (RSI) parameter
ranges from 0 to 838, which determines the preamble format
of the PRACH signal. Specifically, the PRACH preamble is
generated from a Zaddoff-Chu (ZC) sequence

- mtun(n+1)

pu(n) =e M, 0<n < Nge—1, 6]

where n is the time index of ZC sequence, and w is the physical
root sequence index of RSI. The detailed mapping table of
and RSI is given in [5]. Ny is the length of the ZC sequence,
whose value is 839 in preamble format O to 3 and 139 in
preamble format 4.

RSI is used to generate a ZC root sequence as the base
sequence. There are 64 different sequences generated by
cyclically shifting the base sequence and a UE can randomly
select one preamble based on the parameter sent from the eNB.
The cyclic shift interval is referred to as C,, and the definition
of C, differs between restricted and unrestricted sets. In this
paper, we only consider the case of unrestricted sets, and C,
is defined as follows

Cv :vNcsa UZO,].,...,LNzc/Nch 717 (2)

where Ncs is a fixed interval specified by the parameters of
zeroCorrelationZoneConfig and Highspeedflag in [5], |-] is
the floor operation, v is the cyclic shift index. The cyclically
shifted ZC sequence p,, ,(n) can be expressed as

Puw(n) = pu((n+ CU)NZC)» 3)

where the subscript (-)n,. represents the modulo Nzc op-
eration. When the cyclic shift operation cannot generate 64
preambles by the same u-th root sequence, i.e. 63 X Ncg >
Nzc, the next rootSequencelndex will be chosen to continue
the sequence generation. In general, for a specific eNB, the
RSI and the cyclic shift interval are unchanged over a period
of time. In practice, all 64 PRACH preambles associated with
an eNB can be generated by a single RSI using a small cyclic
shift interval.
The time-discrete PRACH signal is represented as

Nzc—1 Nygc—1
_] 2gnk
=/prACH Z Z puv zc
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where idx, ranging from O to 63, is the index of signals
generated from 64 kinds of p, ,(n) whose content is deter-
mined by u and v; idxr equals v when all the 64 PRACH
preambles can be generated from the same wu-th root ZC
sequence. Oprach 1S an amplitude scaling factor, ¢ is a fixed
offset in the frequency domaln A fra is PRACH preamble
subcarrier interval, K = ,and Af = 15 kHz, is the LTE
uplink symbol subcarrier 1nterval. ko, ¢, K together consist of
the frequency offset factor. icp is the length of cyclic prefix
(CP).

The diagram of the PRACH generation system is shown
in Fig. 1. Taking the preamble format 0 as an example. The
values of the above parameters are Nyc = 839, ¢ = 7,
Afga = 12.5 kHz, K = 12, kg = —36. When RSI is set
to 0, the corresponding basic ZC sequence value wu is 129.
The parameter highSpeedFlag is set to false, and zeroCorrela-
tionZoneConfig is set to 1, which decides that the value of the
fixed interval N5 is 13. The maximum cyclic shift interval
is 13 x 63 = 819, which is less than the ZC sequence length
839. Therefore, 64 PRACH symbols can be generated from
the same u-th root ZC sequence. At first, the ZC sequence
Pu,v is generated by the aforementioned procedures. p,, ., (n)
is converted via the discrete Fourier transform (DFT) to

Nzc—1

= " pusln)e 7 5)

n=0

According to [5], the DFT size Nppr = T = 24,576,
where Ty is the sampling period (1/(30.72 MHz)). The inverse
discrete Fourier transform (IDFT) process is given as

Nzc—1

810 (1) 2 Z Py (k)e

Then s}, (i) is multiplied by the frequency offset factor
ei2m(p+K(ko+1/2)i/Nwrr in the time domain, At last, the icp
samples of the tail part of the sequence are copied to the
beginning of the sequence, forming the CP.

; 2mik

J NiprT | (6)
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Fig. 1. PRACH baseband signal generation progress.
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Fig. 2. Two LTE PRACH signals in the time domain from the same terminal.
(a) Preamble index v at 0. (b) Preamble index v at 34.
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We generated two PRACH preambles with different indexes
using simulation and showed their time-domain waveforms in
Fig. 2. The two waveforms are generated when the UE ran-
domly selects v=0 and v=34 with the aforementioned settings.
It can be observed that, although both time-domain waveforms
are generated by the same u-th root ZC sequence, they exhibit
significant differences after undergoing different cyclic shifts.
The eNB is capable of detecting the PRACH signal randomly
generated by the UE during competitive access process.

III. PROBLEM STATEMENT AND SYSTEM OVERVIEW
A. Problem Statement

As can be observed from (1) and (3), the preamble sequence
is not fixed for a UE, which will result in various time
domain signals. As exemplified in Fig. 2, the time domain
waveforms are different when they are generated by a different
preamble index. Therefore, using the time domain I/Q samples
for RFF identification becomes difficult due to their temporal
variations. It is important to extract other stable RFF features.
In this paper, we assumed all the LTE terminals are connected
to the same eNB, which means they have the same w-th root
ZC sequence. However, in practical scenarios, LTE terminals
will be connected to different eNBs when they are moving
around. The different eNBs will have a different RSI, which
results in different ZC root sequences wu. Extracting RFF
features under such circumstance has been studied in our
previous work [36].

Steady-state
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Fig. 3. The transient parts and steady-state part of PRACH preamble.

Because the bandwidth of LTE PRACH signals is 1.08
MHz, we used a sampling rate of 16 MSamples/s. Such
oversampling will allow us to get good resolution signals
for RFF. A real captured waveform of the PRACH preamble
is shown in Fig. 3. There is a semi-steady part, including
the power-on and power-off transients. The preamble signal
received in the wireless propagation channel deviates from
the standard one. In particular, with a sampling frequency of
16 MSamples/s, we take 100 samples before and after the
synchronization start point to form a window of 200 samples
to capture the power-on signal features. Similarly, we take
200 samples, with 100 samples before the synchronization
endpoint and 100 samples after the synchronization endpoint,
to capture the power-off signal features.! The relative position
of transient parts and steady-state part of the PRACH signal
is shown in Fig. 3.

Look more closely at the power-on and power-off transients
as well as the steady-state parts. Fig. 4 depicts the transient
amplitude and part of the steady-state amplitude of 70 PRACH
preambles sent by LTE terminals. We constructed a testbed
with 8 LTE terminals, which are from three models, as shown
in Table I. Among the devices used in our study, LTE1-3 are
from the same model and brand, while LTE5-7 are from a
different brand but the same model. We also considered the
potential for adversaries to use a software-defined radio (SDR)
platform to launch a flooding attack on the PRACH signal in
the case of denial of service (DoS) attacks. As a result, we
also included the USRP B205 SDR. as an access terminal
for experiments. These experimental devices cover a variety
of types, brands, and models, allowing us to conduct a large
number of experiments and collect a diverse dataset of PRACH
signals in different scenarios. It can be seen from Fig. 4(a)
and Fig. 4(b) that the transient parts of the same terminal

Note that the length of the transient part should not exceed 20 us according
to the specification [5]. It means that our choice of 200-point observation
window size can capture most of the transient part. In fact, the number of non-
zero samples before the synchronization start point or after the synchronization
endpoint is usually less than 100 in most of our practical measurements. This
window size is sufficient for the observation of signal transient behaviour.
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TABLE I
LTE DEVICE INFORMATION.

—LTE1

——LTEL
1L —LTE4
—LTE6

are relatively stable, which suggests that the signal features
of the same terminal are stable. Moreover, the transient parts
of PRACH preambles sent by the UEs of different models
show significant differences. For instance, LTEl and LTE6
are from different brands, and their power-on transient signals
start at sample index 72 and 135, respectively, which is notably
distinct. Furthermore, the peak-amplitude of the power-off
transient signal at approximately sample index 85 exhibited
significant differences and remained consistent across multiple
experiments. In the meantime, according to Fig. 4(c) and
Fig. 4(d), the features of the transient parts are somewhat
similar for the terminals of the same model, which could
lead to certain difficulties when distinguishing the terminals
of the same model. Fortunately, as can be seen from Fig. 4(e)
and Fig. 4(f), the steady-state parts of the preambles sent by
the terminals of the same brand show identifiable differences.
For instance, LTE1 shows a notable distinction from LTE2
and LTE3 of the same brand around sample index 10 and
125, respectively. This means that it is possible to build a
distinguishable fingerprint if we take both transient and steady-
state parts into account.

In summary, the time domain waveform of an LTE terminal
will vary according to the preamble index, which makes them
not ideal for RFF identification. A suitable signal represen-
tation should be designed. In addition, different parts of the
waveform exhibit varied features. A hybrid approach to exploit
these features independently is desirable but missing.

B. Proposed Solution

In this paper, we designed a hybrid identification approach
for LTE terminals. While the majority of the RFF identification
literature focuses on closed-set classification, this paper targets
identifying rogue unknown devices by exploiting autoencoder
(AE) architecture for open-set identifications. The system
consists of two stages, namely training and identification, as
shown in Fig. 5.

1) Training: In the training stage, the receiver will capture
a large number of signals from the authorized LTE terminals.
The signals will be first processed by signal preprocessing al-

) o
LTE g 08| —_LTE8 g
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Transceiver Chip . o o
Version E 0s g
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Qualcomm Qualcomm = o - 100 150 200 50 100 150 200
LTE2 Google N 5 LTE Cat.4
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Fig. 4. Real collected LTE signals. (a) Power-on transient of different brands.
(b) Power-off transient of different brands. (c) Power-on transient of the same
brand (Google Nexus5). (d) Power-off transient of the same brand (Google
Nexus5). (e) Part of the steady state of the same brand (Google Nexus5). (f)
Part of the steady state of the same brand (Huaiwei P9).
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Fig. 5. Overall framework of the hybrid LTE identification system.

gorithms, including time synchronization and frequency offset
compensation, introduced in Section IV.

RFF extraction is the essential step as it extracts the unique
hardware impairments from the captured wireless signals. As
indicated in Section II, the preamble of PRACH is generated
by different root ZC sequences, which will result in various
I/Q sequences. Therefore, directly using I/Q samples for
identification is not viable. In addition, as shown in Fig. 3,
there are both steady-state and transients in the received signal,
which inspires us to design customized extraction algorithms
for them. Based on the above motivations, we designed D-
FFT for the steady-state part and WT coefficient graph for
the transient-off part. The two methods will be elaborated in
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Fig. 6. LTE PRACH Signal preprocessing before RFF extraction.
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Section V.

Finally, we designed two autoencoder models to process the
D-FFT features and the WT graphs. We further integrate their
MSE. Once the training is completed, a trained model will be
produced, which will be used in the identification stage. The
design details will be explained in Section VI.

2) Identification: In the identification, the receiver will
capture a waveform, use the same signal preprocessing al-
gorithms and RFF extraction methods in the training stage.
Based on the extracted RFF features and the pre-trained model,
the receiver will identify whether it is from the authorized
device(s). We studied two cases, i.e., identifying authorized
individual devices and identifying authorized sets (e.g., devices
from the same brand). Different from closed-set classification
which does not consider unknown or rogue devices, our paper
will be able to detect them.

IV. SIGNAL PREPROCESSING

In order to accurately obtain the start and end points
of the transient RFF feature, the receiver must synchronize
the PRACH signal accurately. In common usage scenarios,
PRACH signal detection during UE access does not demand
precise time and carrier frequency synchronization. We have
designed a preprocessing method for synchronization based on
the characteristics of the PRACH signal. The signal prepro-
cessing is shown in Fig. 6, consisting of time synchronization
and frequency offset estimation and compensation.

A. Coarse Time Synchronization

Coarse time synchronization is performed based on the CP
of the ZC sequence. A coarse estimation of the starting point of
the signal can be given by the peak of the correlation operation

Lep—1
Deoar = argmax Z @ +m) -2 (G +m+ Lzc) |,
m i=0

(N
where Z(i) is the collected I/Q samples, Lzc and Lep are the
number of samples of the ZC sequence and the CP in the time
domain, respectively. (-)* denotes the conjugate of a complex
number. The summation in the equation is the correlation of
a sequence & and its delayed copy. The operator argmax(-)

gives the value of m when the following expression reaches
the maximum value.

B. Frequency Offset Estimation and Compensation

After the coarse time synchronization, a coarse estimation
of the carrier frequency offset (CFO) is performed based on
the offset of the signal spectrum

(I —Ip) + (I — Ig)
2Nrrr

Afcoar = : F57 (8)

TABLE II
THE CFO STATISTICAL RESULTS OF LTE DEVICES

Device Model CFO Mean CFQ Sfandard
(Hz) Deviation (Hz)
LTE1 Google Nexus 5 -1.3221 16.4308
LTE2 Google Nexus 5 1.1934 15.1441
LTE3 Google Nexus 5 2.8097 15.8251
LTE4 Google Nexus 6P -18.5898 13.3214
LTES Huawei P9 7.2652 18.9580
LTE6 Huawei P9 2.7723 26.4250
LTE7 Huawei P9 6.0214 36.3126
LTES USRP B205 -2.1164 138.4374

where Ir and I;, are the right band index and the left band
index of the standard signal on the spectrum, respectively.
Similarly, I and I}, are the right and the left frequency band
indexes of the received signal, respectively. Nggr is the FFT
size, the same as the signal length, and Fj is the sampling rate
of the received signal. Next, we compensate frequency offset
in the received signal

—J2miA feoar

Teowr (1) = Z(1) - € Fs . 9)

Then, the fine estimation of frequency offset is performed
based on the CP

EiL:ClP angle (.Z'coar(i> ) xé(oar(i + LZC))
2nLep - Lzc

A ffine = - Fs, (10)
where angle(-) represents the phase of a complex number.
Then, the frequency offset is compensated as
—J2miA fhine

(1D

With the help of aforementioned frequency offset estimation
method, we can derive the distribution of the mean and
standard variance of the CFO among different LTE terminals.
The specific results are presented in Table II. As indicated
by the table, the CFO mean of LTE devices predominantly
centers around 0 Hz, with only a few devices exhibiting
deviations. However, the standard deviation distribution of the
CFO across different devices is considerably larger than the
distribution of its mean value around 0 Hz. Consequently, the
CFO characteristics of LTE devices are unable to effectively
contribute to RFF. Therefore, we compensate the residual CFO
of the LTE devices to eliminate the influence of residual CFO
on RFF extraction.

xﬁne(i) = zcoar(i) e

C. ZC Sequence Detection

The signal detection method based on cross-correlation
can effectively identify similar signal sequences within the
received signal using local sequences. In actual eNB signal
processing, signal cross-correlation can be conducted using
the gate circuit implemented by the hardware. However, in
our baseband algorithms based on software processing, exten-
sive signal cross-correlation calculations consume significant
computational resources. With 64 possibilities for the signals
transmitted by PRACH, accurate PRACH signal detection
requires cross-correlation based on the 64 generated PRACH
local sequences at the receiving end. Leveraging the Fourier
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transform property, the convolution operation of the time-
domain signal can be rapidly achieved through the point-
multiplication operation of the frequency-domain signal. We
have designed a fast signal detection algorithm based on the
point-multiplication of 64 generated standard ZC sequences
in the frequency domain. This method expedites the cross-
correlation calculation of 64 PRACH signals, facilitating the
completion of ZC sequence detection.

According to the good autocorrelation of the ZC sequence,
ZC sequence detection is performed. After removing the CP,
the compensated signal Zgne (i) and the standard preamble
signal Sigx (¢) are converted via the fast Fourier transform (FFT)

{Xﬁne(q) = f(fﬁne(i)) (12)

Siax(q) = F(5iax(i))
where the F(-) is the FFT operation. In our system, the
received PRACH signal is sampled at 16 MSamples/s. Based
on this, the length of the ZC signal after removing the CP
is 12800 points, hence, indicating that the signal processing
involves 12800 FFT points.

The correlation sequences of Tgne(i) and Sigc(¢) can be
calculated efficiently in the frequency domain by

Pidx (1) = f_l(yﬁne(q) '§;x(q))7

where the F~1(-) is the inverse fast Fourier transform (IFFT)
operation.
Then, the corresponding ZC serial number can be found by

(14)

13)

I(idx) = argmax|piqz (1)],

where I(idx) calculates the value of ¢ when the correlation
peak appears between the compensated signal and standard
ZC sequences with different dx. The smaller the value of i,
the smaller the offset of the two signals in the time domain.
The smallest ¢ and the corresponding ¢dz can be given as

idz = argmin (I(idx)) . (15)
idx
The standard synchronization PRACH can be given as
xstandard(i) = S@(l) (16)

D. Fine Time Synchronization

Finally, we use the standard sequence selected by the pre-
vious step to perform cross-correlation with the compensated
signal to find the position of the correlation peak and achieve
fine time synchronization

Lep—1
Dgpe = argmax ( Z 2 dandard () * Tfine (2 + m)) .37
m i=0
We take Dsye as the starting point of the fine synchronized
signal and obtain z(i) for the following RFF extraction.
From the transient and steady state waveform of various
LTE devices depicted in the Fig. 4 using multi-frame signals,
it is evident that we can precisely determine the start and end
points of the transient RFF feature for each device through
the time synchronization method proposed in this paper, and
consistently maintain stability across different experiments.

LTE3
Fig. 7. WT coefficient graphs of the LTE PRACH transient part.

LTE4 LTE7

V. RFF FEATURE EXTRACTION
A. Wavelet Transform for Transient Part

WT has superior time-frequency localization capability
compared with the Fourier transform, which is a more suitable
method for transient signal analysis [39]. It has a very short
base function duration and supports the simultaneous location
of time and frequency information. The WT is defined as

WT(a, ) = / s(t) -w(t_T’y)dt,

— 00

where s(t) is the expression of signal in the time domain,
w(t) stands for the wavelet in the time domain, « is the
scale of the wavelet and  decides the translation of the
wavelet. By stretching or compressing the wavelet, the length
and frequency of the wavelet can be changed, and so does
the corresponding time window length. At the high frequency,
the wavelet is compressed and the time window is narrowed,
which makes the time resolution higher. These changes at
low frequencies are reversed. Hence, WT can express the
frequency components of the signal and provide its specific
position in the time domain.

We propose a method to represent multi-scale WT coef-
ficients in a 2-D graph. The CWT function in the Matlab
toolbox is employed to calculate the wavelet coefficient matrix,
using Morse wavelets [44]. Discretization is performed with a
specified number of sounds per octave of 10. The minimum
and maximum scales are determined automatically based on
the energy spread of the wavelet in frequency and time [44].
After WT processing, a 48200 coefficient matrix is generated
corresponding to the 200 transient points and 48 WT scales.
We further combine the real and imaginary parts to form a new
matrix of 96 x 200. Fig. 7 shows the WT coefficient graphs of
some LTE terminals after the aforementioned feature extrac-
tion. The upper and lower parts of the images consist of the
real and imaginary parts of wavelet coefficients, respectively.
Significant differences can be observed among different LTE
terminals.

oo

(18)

B. D-FFT Spectra for Steady Part

1) D-FFT Processing: As each UE will randomly select
one of the 64 preambles, there will be significant differences
between their time domain waveforms, as shown in Fig. 2.
Therefore, the features of the steady-state part in RFF training
and testing may change when time-domain signals are used.

In this paper, we propose to use D-FFT to mitigate the vari-
ation of the PRACH preambles. Intuitively, though the signal
waveform can change significantly in the time domain, the
responses of adjacent frequencies remain similar, which will
be shown later. Moreover, as the typical multipath channels are
band-limited, the channel frequency responses are also similar
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in adjacent frequencies [45]. Therefore, using a differential
operation to calculate the difference of adjacent frequencies of
the preamble can effectively mitigate the influence of signal
variation on RFF features. Danev and Capkun initially adopted
such operations to polish the frequency domain RFF features
of CC2420 wireless sensor nodes [46].

The signal x(4) is first converted to the frequency domain
by FFT

X(q) = F(=(i)) (19)
Then, the D-FFT feature extraction is carried out by
D-FFT(q) = [X(¢+1) — X(q)|, (20)

where |-| is the absolute value of a complex number. D-FFT(q)
actually provides the difference of the adjacent spectra of
signal ().

2) Effect of D-FFT Based PRACH Variation Mitigation: In
this part, we will evaluate the preamble similarity via the cross-
correlation of two sequences. A large peak value of the cross-
correlation indicates a high similarity of the sequences. The
correlation property of the PRACH preamble sequences will be
derived and will demonstrate that the D-FFT operation is able
to mitigate the variation of the PRACH signal and therefore
reduce the influence on RFF extraction and recognition.

a) Correlation Property of the Original PRACH Signal:
According to (4) and (5), the time domain PRACH preamble
signal s;4,(7) can be simplified as

Nzc—1

= BpracH Z Py (k)

k=0

. eﬂ)k(i—icp)7

Sidz (1) 21

where 0, = 2w (k+o+ K (ko+ %))AfRA, P, (k) is the result
of the DFT of cyclically shifted ZC sequence py, ., (n).

The cross-correlation function of the two sequences can be
expressed as

T's<a, b> Sb m+ Z) 22)

| X
= x 2l
where m represents the offset between s;(¢) and s, (4), ranging
from —N to N where NN is the number of samples.

Without loss of generality, we normalize the correlation
function by dividing the correlation coefficient at offset 0

r o>
R o (m) = Ts<ab>(m)

23
Ts<a,b> (O) 23

The peak of the cross-correlation coefficients is
Peaks<a,b> = max (Rs<a,b> (m)) . (24)

Therefore, the mean value of C2, = 2016 correlation peaks
between 64 signal sequences can be inferred as

64
l)eakmgnal - 2 § § Peaks<a b>-
a=1b=a+1

(25)

b) Correlation Property of the Differential Spectrum:
According to (21), the N-point FFT of PRACH is given by

Tiq

BrracH g Sida (1 i

; Nzc—1 (26)

- ﬂPRACH Z Z P)u v

i=0 k=0

uix( )

2miq
ejﬂk i— ch)ej—N ’

where F;4.(q) is the frequency response of the idx-th PRACH
signal at the qth subcarrier. Accordingly, the differences be-
tween adjacent FFT spectra can be inferred as

Fidm(Q) = dew(q + 1) - Fidm (Q)
N—1 Nge—1

= BprRACH Z Z Py (k)
i=0 k=0
—1 Nygc—1

— Beracu Z > Pual

=0 k=0

6]9’“(1 icp) ]M

27)

Jak(i—iCP) j 25

Then, the cross-correlation function of two sequences can be
calculated as

_1ZF (m+q),

where m represents the relative offset of the two sequences,
ranging from —(N — 1) to +(N — 1). Similarly, the normal-
ization is performed as follows

Tf<a,b> (M (28)

Tf<ap>(M)
Tf<a,b> (0) '
Peak cross-correlation between two differential spectral se-
quences can be obtained

Ricap>(m) = (29)

Peakf<a7b> = maX{Rf<a,1,> (m)} (30)

The mean values of C2, = 2016 correlation peaks between
64 sequences can be expressed as

64 64

TZ Z Peakf<a7b>.

64 4—1 b=a+1

PeakD_FFT = (31)
c) Improved Correlation Property by D-FFT Processing:
At the sampling rate of 16 MSamples/s, it can be calculated
that Peakgigna is 0.7747 and Peakp.gpr is 0.9130. The overall
correlation of 64 sequences is highly improved after D-FFT
processing. Fig. 8 shows the D-FFT of two signals with
different preamble indexes. Compared with the time domain
signals shown in Fig. 2, the cross-correlation degree of the
two sequences with a large difference in the time domain has
been greatly improved after the aforementioned processing.

VI. HYBRID AUTOENCODER DESIGN

In the actual environment, the eNB needs to determine
whether it is a legitimate device or an unknown illegal device
based on the PRACH signal transmitted from UE. We are also
concerned about the identification of anonymous terminals.
Identifying rogue/unknown terminals should be carried out
without any information about the unknown terminal. There-
fore, we employ AE to address this problem.
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Fig. 8. The D-FFT of two LTE PRACH signals from the same terminal. (a)
Preamble index = 0. (b) Preamble index = 34.

I I I L
7200 7400 8000 8200

A. The Design of Autoencoder

AE is an unsupervised neural network model designed to
learn how to represent the input information by taking it as
the learning object [47]. The input data is regarded as the
supervision to guide the neural network to learn a mapping
relationship, so as to obtain a reconstructed output. In our
work, the stacked autoencoder (SAE) is used, which consists
of several autoencoders stacked in series. In the detection
scenario, when the difference between the output reconstructed
by the network and the original input exceeds a certain
threshold, it is considered an abnormal one.

After the aforementioned signal processing and RFF feature
extraction, the ith input feature of AE is denoted as G;. It is
worth noting that G; could be multi-dimensional due to the
format of the input. For example, if the input is a segment,
G, is 1D. If the input is a graph, G; is 2D. In order to
make the output of the subsequent decoder between 0 and 1,
and eliminate differences between data categories, min-max
normalization should be carried out first

¢ = S mi) G e o1,
max(G;) — min(G;)

where [ is the length of the extracted feature vector, and d

is the dimension of one feature vector. When the feature is

D-FFT, [ equals the length of D-FFT sequence and d equals

1. When the feature is a WT graph, [ equals the length of the
signal and d equals the amount of WT scales.

Assume the function learned by the encoder is ¢y, . (-),
where w and z are the network parameters. The input after
encoding can be expressed as

(32)

T; = ¢u,:(G}), T, € R ™. (33)
where [ represents the length of the encoder output, which is
fixed at 20 in our system.

Similarly, the reconstructed output after decoding can be
described as

Y = 0w (T;), Yi€ R™% (34)

where ., ,(-) represents the operations at decoding layer.
Then, the mean square error (MSE) is applied to evaluate
the reconstruction error
12
Y; - Gz 9

N,
. 1 &
MSE(G,Y) = + > (35)
8 =1

where N, stands for the number of training samples.

B. Autoencoders for WT-Based 2D Input

The wavelet coefficient map that we extract is a 2D graph.
Therefore, we design an AE for 2D input. As shown in Fig. 9,
the 96 x 200 x 3 graph is used as input. Three convolution
layers, two max-pooling layers, and four fully connected layers
are added to the encoding layer. The feature map size of each
layer is as shown in the figure, and the kernel size is chosen
as [6 x 6], [5 x 5], [4 x 4] for convolution, and [2 x 2] for max-
pooling. Then, a completely symmetrical network structure
forms the decoder, which is composed of four fully connected
layers, two up-pooling layers, and three deconvolution layers.
The parameters of the encoder layers are as follows

e The first convolutional layer: The number of trainable
parameters is (62) x 3 X 6 = 648. After a [2 x 2] max-
pooling layer, the graph size is [45 x 97].

o The second convolutional layer: The number of trainable
parameters is (5%) x 6 x 16 = 2,400. After a [2 x 2]
max-pooling layer, the graph size is [20 x 46].

o The third convolutional layer: The number of trainable
parameters is (42) x 16 x 32 = 8192. After shape change,
the data size is [23392 x 1].

o The fourth fully connected layer: The number of trainable
parameters is 1000 x 23392 + 1000 = 23, 393, 000.

o The fifth fully connected layer: The number of trainable
parameters is 120 x 1000 + 120 = 120, 120.

o The sixth fully connected layer: The number of trainable
parameters is 84 x 120 + 84 = 10, 164.

o The seventh fully connected layer: The number of train-
able parameters is 20 x 84 + 20 = 1, 700.

The number of encoder parameters of the AE network for
2D input equals 23,536,224, nearly half of the amount of the
whole network due to symmetry. In this paper, we used a
GeForce RTX 2080 graphics card to train the network. In
the experiment of selecting 100 frames of signals for training
with 100 iterations, the network took 18.292 seconds. In the
experiment of testing the signal with 1,687 frames, the time
consumption was 1.885 seconds.

In RFF identification, the AE trained by legal devices will
demonstrate the learned mapping relationships to every input
device (including the illegal devices), thereby exhibiting the
characteristics of a legal device in the reconstruction result.
Due to environmental variations, deviations may occur among
legal devices. Our goal is to minimize the MSE of legal devices
after AE reconstruction, while maximizing the MSE of illegal
devices after AE reconstruction. A ratio Rysg is defined to
evaluate the discrimination effect for AE as follows:

MSE]egal

_— 36
MSEjjjegal (36)

Ryvse =
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where MSEjea1 and MSEjjeea represent the average MSE of
legal and illegal devices, respectively. A lower Rysg indicates
a larger reconstructed MSE value of illegal devices after
the AE reconstruction, making it easier to detect the illegal
device. We extract wavelet transform features from the power-
on transient, steady state, and power-off transient parts of
signals respectively, and calculated Rysg for each part. The
ratio of the power-on transient is 0.6935, that of the power-off
transient is 0.5896, and that for the steady state is 0.9811.
Fig. 10 illustrates the distribution of MSE between legal
and illegal devices after AE reconstruction using power-off
transient feature. As shown in the figure, it is evident that
legal and illegal devices can be easily distinguished based on
the MSE after AE reconstruction.

C. Autoencoders for D-FFT Based 1D Input

The adjacent spectrum we extracted is a sequence of 1D.
As shown in Fig. 11, 1200 x 1 data is used as input, and
three fully-connected layers are used to form the encoder and
decoder separately. The parameters of the encoder layers are
as follows
o The first fully connected layer: The number of trainable
parameters is 120 x 1200 + 120 = 144,120.

o The second fully connected layer: The number of train-
able parameters is 84 x 120 4+ 84 = 10,164.

e The third fully connected layer: The number of trainable
parameters is 20 x 84 4 20 = 1,700.

signals for training with 100 iterations, the network took 5.462
seconds. In the experiment of testing the signal with 1,687
frames, the time consumption was 0.780 seconds.

D. Integration of Two MSE Outputs

We extract the WT-based 2D RFF feature and D-FFT based
ID RFF feature and design AE respectively for unknown
device identification. The fusion authentication of the trans-
mitter with multiple RFFs is a prospective direction for RF
fingerprinting [48]. Based on the extracted two-dimensional
graph features from WT coefficients and one-dimensional
sequence features from D-FFT, we designed a fusion autoen-
coder that combines different dimensions of features. The
fusion is achieved by utilizing the MSE of the previously
designed autoencoder’s output as a new autoencoder input,
which also includes the fusion of transient and steady-state
RFF features. The structure of the autoencoder for feature
fusion from different dimensions is illustrated in Fig. 12.
MSEI and MSE2 are the output MSE of WT feature and
D-FFT feature, MSE3 is the output MSE of the above two
MSE after passing through the AE network.

We use the data from each authorized terminal to train the
network model. Then, we test the data set containing the data
from all the terminals. When the combined MSE exceeds
a certain threshold, it is considered as a rogue terminal.
Otherwise, it is recognized as an authorized one.
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Fig. 13. Experimental testbed.

VII. EXPERIMENTAL EVALUATION
A. Experimental Setups

1) Devices: We built an experimental testbed as shown in
Fig. 13, including UEs, a pseudo base station and a receiver.
The reference clock of the pseudo base station and the receiver
is connected via a 10 MHz signal generation source.

We adopted a USRP B205 SDR platform to build a
pseudo-base station with the open-source SDR LTE software
suite [49]. In order to prevent experimental LTE device from
being interfered with by commercial eNB or other LTE signals
collected by the receiver, the uplink frequency selected for the
experiment is 2565 MHz. This frequency falls within a free
frequency band that is not used by operators, as determined
by detecting LTE PBCH signals in the environment at the
experimental site of the Purple Mountain Laboratory, Nanjing,
China. The RB number of the LTE communication system
is set to 50, and the PRACH frequency offset is set to
2. In accordance with the PRACH time-frequency structure
introduced in Section II, the PRACH occupies 6 consecutive
RBs, with each RB having a bandwidth of 180 KHz, the center
frequency f. transmitted by the PRACH can be calculated as
follows:

fo = 2565MHz — (% - g — 2) x 180KHz = 2561.4MHz.

(37

RSI is set to 0, and the cyclic shift interval index is set to 1,
corresponding to the CP interval of 13.

We used 8 UE for evaluation, including 7 LTE mobile
phones from 3 brands and 1 USRP B205 SDR platform.
Since USRP devices can be set up as LTE terminals to access
the pseudo-base station, we consider that USRP devices can
be potential attackers in LTE networks and therefore also
capture the USRP signals in our study. The parameters of each
terminal information are shown in Table I. We studied both
individual devices and category identification.

« Individual Identifications: One LTE terminal is selected
as the authorized terminal (positive class) while the
remaining seven terminals as rogue terminals (negative
class).

o Category Identifications: The LTE terminals are first
categorized into different brands. One brand of the LTE
terminals is selected as the authorized class (positive
class) while the remaining brands as rogue ones (negative
class).

We employed a USRP N210 platform for signal acquisition.
The captured signals were transferred to a server for further
processing. The server configuration for training the AE net-
work in our experiment is as follows: a GeForce RTX 2080
graphics card, four Intel(R) Xeon(R) E5-2678 V3 @ 2.50 GHz
CPU with 12 cores. The version of CUDA is 11.0.

2) Signal Collection: The signal collection was carried out
in an office environment, as shown in Fig. 14. The variation of
the environment will affect the stability of RFF. We considered
the effects of location, acquisition date, and working time, and
constructed the following three groups of datasets:

¢ Acquisition Date, D1, D2, and D3: For each LTE termi-
nal, we collected PRACH frames at one fixed location on
three different dates when the terminal was just switched
on, forming datasets D1, D2, and D3, each with 1677,
1834, and 1340 frames in total, respectively. Please note
the dates for different devices in the same dataset might
be different.

e Acquisition Location, L1, L2, and L3: For each LTE
terminal, we collected PRACH frames at three different
locations on the same day, forming datasets L1, L2, and
L3, each with 1565, 1488, and 1460 frames, respectively.
There were eight locations, including six LOS locations
and two NLOS locations. The terminal was randomly put
in one location.

o Working Time, T1, T2, and T3: For each terminal, we
collected PRACH frames at the same location and after
the device has been turned on or worked for 6 hours, 12
hours, and 24 hours, forming datasets T1, T2, and T3,
each with 1615, 1490, and 1687 frames, respectively.

A total of 14,156 PRACH segments were collected, including
4513 frames at different locations, 4851 frames at different
dates, and 4792 frames at different working hours. There
were 1300 to 2500 frames collected from each terminal.
Regarding LTES, i.e., USRP B205, the signals were sampled
from multiple positions, which may be different from the ones
marked in Fig. 14. Table III summarizes the detailed collection
information of the data sets.
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TABLE IIT
DATASET INFORMATION UNDER DIFFERENT ENVIRONMENTAL FACTORS.
Brand | Device Date Location | Hours worked
9-Jul-21, D1 P8, L1 6H, T1
Brandl LTE1 19-Jul-21, D2 Ps, L2 12H, T2
31-Aug-21, D3 P3, L3 24H, T3
6-Jul-21, D1 P1, L1 6H, T1
Brandl LTE2 16-Jul-21, D2 P3, 12 12H, T2
1-Sep-21, D3 P5, L3 24H, T3
6-Jul-21, D1 P6, L1 6H, T1
Brandl LTE3 16-Jul-21, D2 Ps5, L2 12H, T2
30-Aug-21, D3 P7, L3 24H, T3
8-Jul-21, D1 P6, L1 6H, T1
Brand?2 LTE4 18-Jul-21, D2 P5, L2 12H, T2
1-Sep-21, D3 P3, L3 24H, T3
4-Jul-21, D1 P3, L1 6H, T1
Brand3 LTE5 14-Jul-21, D2 PI1, L2 12H, T2
23-Jul-21, D3 P5, L3 24H, T3
2-Jul-21, D1 P6, L1 6H, T1
Brand3 LTE6 14-Jul-21, D2 P4, 1.2 12H, T2
22-Jul-21, D3 P2, L3 24H, T3
2-Jul-21, D1 P35, L1 6H, T1
Brand3 LTE7 10-Jul-21, D2 PIL, L2 12H, T2
22-Jul-21, D3 P3, L3 24H, T3

3) Scenario: We set two experimental scenarios to verify
the robustness of the proposed method against the environment
variables (location, date, or working hours).

e Scenario 1: The training and testing share the same
dataset. For example, both training and test datasets are
DI.

e Scenario 2: The training and testing have different
datasets. We use D1 (L1/T1) as the training set and
the test datasets consist of D1-D3 (L1-L3/T1-T3), when
studying the effect of acquisition dates (location/working
time).

4) Benchmark Approaches: The hybrid method we pro-
posed is referred to as W-D. We also studied the following
three benchmark approaches for comparison.

o CWT uses a single WT feature. The AE structure for 2D
input designed in Section VI-B is adopted.

e HWT [40] extracts the wavelet coefficients at 4 scales,
draws the histogram of the four groups of coefficients and
calculates the number of wavelet coefficients within each
numerical interval as the input feature. The AE structure
for 1D input designed in Section VI-C is used.

e D-FFT [16] employs the adjacent spectral differences of
frequency domain steady-state signal as the input feature.
The AE structure for 1D input designed in Section VI-C
is used.

B. Metrics

Receiver operating characteristic (ROC) describes the true
positive rate (TPR) and the false positive rate (FPR) with
different thresholds.

We can also select the threshold value when TPR and FPR
have the maximum difference. The TPR with this threshold
is defined as the identification accuracy of the current LTE
terminal/category:

Threshold = argmax(Prpr — Prpr),
forn (38)
Accuracy = argmax(Prpr — Prpr),
Prpr
where K7y, is a list of potential thresholds, while Prpr and
Prpr are the lists calculated from the corresponding values of

KTh'

C. Results and Analysis

1) ROC Results: Fig. 15 illustrates the ROC curve of W-D
obtained from the dataset of LL1 in scenario 2, the x markers
at each curve are the accuracy we defined in (38).

Fig. 15(a) shows the results of category identification. The
curve of each category is close to a right angle, which reveals
that each category has a good degree of discrimination.

Fig. 15(b) shows the results of individual identification.
LTE2 and LTE3, LTES, LTE6, and LTE7 terminals may have a
certain degree of confusion respectively. According to Table I,
LTE2 and LTE3 are both manufactured by Google with the
same model, and LTE6 and LTE7 are both manufactured
by Huawei with the same model. Terminals of the same
model have the same RF design, which caused high similarity
in the RFF features. Besides, the serial sequence of LTE6
and LTE7 are closer than LTES5 and the similar production
batches reduced differences between analog circuits greatly.
While compared to LTES with the same model, the serial
sequence may reflect that LTES may not be produced in
the same batch as the LTE6 and LTE7. This phenomenon
is also observed in LTEI. Therefore, despite being the same
model of LTE terminals, there will be certain variations in
the RFF of different product batches. It is also worth noting
that LTE8 performs well both in the category and individual
identification, which is due to the inherent obvious differences
between LTE mobile phones and USRP platforms.
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Fig. 15. ROC curve in Scenario II of L1. (a) ROC for the category

identification. (b) ROC for individual identification.

TABLE IV
THE AVERAGE IDENTIFICATION ACCURACY.
Scenario 1 Scenario 2

Method Category | Individual | Category | Individual

W-D 98.80% 90.47% 98.84% 90.27%

CWT 98.41% 88.17% 98.40% 87.32%

HWT 80.43% 79.17% 82.73% 75.85%
D-FFT 79.92% 80.31% 77.99% 78.51%

2) Identification Accuracy: Table IV shows the identifica-
tion accuracy of the four methods to identify the category and
individual for LTE terminals in both scenarios, which is the
average result against the above three environmental variables.
The identification accuracy of W-D and CWT can achieve over
87% for individual identification and over 98% for category
identification, which is much higher than HWT and D-FFT. In
both scenarios, the W-D method improves the accuracy both in
the category and individual identification compared to CWT.

Fig. 16 exemplifies the identification results of the four
methods at different locations in Scenario 1. It can be seen
that the accuracies of the two methods, W-D and CWT, are
significantly higher than the other two methods. Moreover, the

13

100

90

Accuracy(%)
o]
o

70

60

CWT HWT D-FFT

(a)

100

[
L2

90

Accuracy(%)
[e¢]
o

70

60

CWT

HWT D-FFT

(b)

Fig. 16. Accuracy in Scenario 1. (a) Category Identification. (b) Individual
Identification.

training results under different sets of data are also relatively
stable. In experiments at L1, L2, and L3, the fluctuation of
recognition accuracy of W-D and CWT is less than 3%, while
reaches 7% with D-FFT. The results for acquisition date and
working time are similar trends, which are not included here
for simplification.

Fig. 17 shows the identification results of the four methods
under three variables for individuals in Scenario 2. Taking
Fig. 17(a) as an example. As the training dataset is D1, the
accuracies of D2 and D3 test datasets are reduced compared
to DI test set. HWT and D-FFT have severe performance
degradation. Similar conclusions can be drawn from the other
two cases in Fig. 17(b) and Fig. 17(c). In contrast, W-D kept
a relatively good performance over different environmental
factors, which is desirable. In practice, the test date, location,
and working hours will indeed be different from the training
settings. This means that the proposed method is more robust
to the changes in environmental factors, showing advantages
over traditional methods in practical application scenarios.
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Fig. 17. Accuracy in Scenario 2 for individual identification. (a) Different
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VIII. CONCLUSIONS

In this paper, a hybrid AE-based LTE RFF identification
scheme is proposed to identify rogue LTE terminals. The 2D
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wavelet coefficients graph from the transient-off part of the
LTE PRACH signal and 1D differential spectrum from the
steady part of the LTE PRACH signal are extracted as RFF
features. These two RFF features can be combined to improve
the robustness of the AE identification system effectively under
different environmental factors. Besides, datasets containing
different times, locations, and working hours are established to
verify the stability of RFF features. The identification accuracy
is up to 98.84% for different categories and 90.27% for
different individuals, which significantly outperforms existing
methods.
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