Authorized and Rogue LTE Terminal Identification
Using Wavelet Coefficient Graph with Auto-encoder

Zhenni Wu*, Linning Peng*', Junqing Zhang?, Ming Liu%, Hua Fu*', Aiqun Hu¥f
*School of Cyber Science and Engineering, Southeast University, Nanjing, China
TPurple Mountain Laboratories for Network and Communication Security, Nanjing, China
iDepartment of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
§School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
YSchool of Information Science and Engineering, Southeast University, Nanjing, China

Abstract—The wide popularity of 4G/SG mobile terminals
increase the requirements of wireless security. Radio frequency
fingerprint (RFF) technology can strengthen 4G/5G air interface
accessing security at the physical layer. In this paper, a wavelet
transform (WT) coefficient graphs RFF extraction with auto-
encoder (AE) based rogue terminal detection scheme is proposed.
At first, WT coefficients at 48 scales are extracted from the
transient-power-off part of LTE physical random access channel
(PRACH) preamble. Then, an AE network structure aimed for 2D
WT coefficient graph is designed for rogue terminal detection. We
successfully distinguish 7 mobile phones and 1 USRP under the
proposed mechanism, where the authorized terminals from the
same manufacturer can be identified with an accuracy of 90.08 %.
In addition, extensive experiments are carried out at LOS and
NOLS scenarios, respectively, the proposed LTE identification
scheme has demonstrated robustness in dynamic environments.

Index Terms—Radio frequency fingerprinting, wavelet, auto-
encoder, rogue terminal identification, LTE

I. INTRODUCTION

The rapid growth of mobile communications raises height-
ened security concerns. The massive 4G/5G terminal access-
ing may cause denial of service (DoS) attacks. Traditional
authentication method usually relies on the pre-shared key
or digital identification. This can hardly handle DoS attacks
from rogue terminals. Radio frequency fingerprint (RFF) is
a physical layer solution for wireless terminal authentication,
which can effectively identify rogue terminals without priori
knowledge.

The LTE standard provides mutual mechanism for users
and base stations by using authentication and key agreement
(AKA) protocols, which provide enhanced security levels
compared to their 2G and 3G counterparts. However, there
are still many potential threats to LTE systems, which can be
grouped into two broad categories: DoS attacks and informa-
tion extraction [1]. RFF has a good characteristic of tamper
resistance and measurability, which can well provide a reliable
mechanism for the authentication of LTE terminals.

In previous studies on LTE RFF identification, Mondal et
al. proposed a minimization of drive testing (MDT) method
for LTE signals to identify different geographical locations [2].
Concerning mobile terminal identifications, Yin et al. extracted
the differential constellation trace figure (DCTF) feature and
classified 6 mobile phones, the classification accuracy can

reach 98.96% in the line-of-sight (LOS) scenarios while
greatly reduced in non-line-of-sight scenarios (NLOS) [4].

In RFF identification problem, the authorized terminal must
be collected and stored at the initial training stage, signals from
the known terminals are then used for classification testing [5].
In most of studies, convolutional neural network (CNN), long
short-term memory (LSTM) and auto-encoder(AE) methods
are used for classification, and the labels of the terminals to
be classified can be predicted [4], [6]-[8]. However, rogue
terminal identification can be applied to detect malicious ter-
minals such as DoS attacks, which is of great significance. And
unsupervised learning is more persuasive in these scenarios
where the identity of rogue terminals is anonymous [9], [10].

Fast fourier transform(FFT) and wavelet transform(WT) are
classical methods to analyze signals. Danev ef al. used the
feature of FFT spectra to identify the wireless sensor nodes
[11]. Ho et al. used Haar wavelet, combined the identification
results at 4 different scales [12], classified CDMA and GSM
signals according to the selected threshold. Baldini et al.
compared the effects of short-time Fourier features and WT
features for 12 wireless devices identification, and the results
present that WT features have better performance [13].

In this paper, we extracted wavelet coefficients of 48 scales
in transient signals of physical random access chanel (PRACH)
preamble of LTE terminals. An auto-encoder (AE) is designed
to identify legitimate terminal from rogue ones. The main
contributions of our work are as follows:

o« A WT based RFF feature extraction method is proposed
for the power-off transient part of the LTE PRACH
preamble. This feature could distinguish slight difference
between the LTE terminal from the same manufacturer.

¢ An AE network is designed for 2 dimension (2-D) WT
feature. The AE network could identify unknown rogue
LTE terminals without priori information.

o An experimental system is built including real LTE termi-
nals. The robustness of the proposed RFF identification
method is proved in both line-of-sight (LOS) and non-
line-of-sight (NLOS) scenarios.

The rest of this paper is organized as follows. Section
IT describes the WT based RFF feature extraction for LTE
PRACH preamble. Section III proposes the auto-encoder net-
work for rogue terminal identification. Section IV introduces
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Fig. 1. Semi-steady phenomenon of LTE PRACH preamble. (a) Power-on
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the experimental setup for PRACH signal acquisition. Section
V evaluates the performance of the proposed method. Section
VI gives the conclusion of this paper.

II. WT BASED RFF FEATURE EXTRACTION
A. LTE PRACH Preamble

PRACH preamble is the first signal sent from an LTE
terminal to Evolved Node B (eNB) for the network connection.
The PRACH preamble is generated by cyclic shift of Zadoft-
Chu (ZC) sequence, derived from one or more root sequences.
In one eNB cell, 64 different PRACH preambles could be sent
from a LTE terminal with random shift. This is the random
access process in 4G/5G network. Generally, under the same
eNB cell, the root sequence index and the cyclic shift interval
remain constant over a period of time. When the base station
coverage is small, using a small cyclic shift interval allows all
64 random PRACH preambles to be under one root sequence
index. The first index of PRACH ZC root sequence can be
controlled by the PRACH configuration parameters in the
eNB, which could be used to generate 64 different preambles
with random cyclic shift interval at LTE terminals [14].

Different from the ideal PRACH preamble defined in the
3GPP standard, our experiment demonstrated that the LTE
terminal has semi-steady state characteristics in the PRACH
preamble. Fig. 1 demonstrates the transient PRACH signal of
one LTE terminal, the 100th point in the two subgraphs is the
synchronization start point and end point respectively. There
are some obvious differences compared with the standard
reference signal to the collected signals before and after the
synchronization points, which is caused by the semi-steady
characteristics of LTE terminals. According to [14], the length
of transient should not exceed 20 us. Therefore, at the sam-
pling rate of 16MS/s, 100 points before the synchronization
start point and 100 points after the synchronization start point
are selected to constitute the power-on transient part in our
research, so does the power-off transient part. The relative
position of transient parts and stable-state part of PRACH
signal is shown in Fig. 2.

B. Wavelet Transform on Transient Signal

WT has superior time-frequency localization capability
compared with the short time Fourier transform (STFT), which
is a more suitable method for transient signal analysis [12].
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Fig. 2. The transient parts and stable-state part of PRACH preamble

It has very short base function time, supports simultaneous
location of time and frequency information, and can be flexibly
selected according to special scenarios. The WT is defined as

o0
WT(a,v) = / S(t) * f(u)dt, (1)
oo o
where S(t) is the expression of signal in the time domain,
f(t) stands for the wavelet in time domain, « means the
scale of the wavelet, and ~ decides the translation of the
wavelet. By stretching or compressing the wavelet, the length
and frequency of the wavelet can be changed, so does the
corresponding time window length. When at high frequency,
the wavelet is compressed and the time window is narrowed,
which makes the time resolution higher. These changes at
low frequency are reversed. Hence, WT can not only express
the frequency components of the signal, but also provides its
specific position in the time domain. Ho et al. extracted 4
WT-scales of wavelet coefficients and applied histogram to
measure the frequency of different energy occurrences at each
WT scale, which is an improvement of extracting the wavelet
coefficients at a single transform scale [12].

We propose a method to represent multi-scale WT coeffi-
cients in a 2-D graph. The CWT function in Matlab toolbox
is employed to calculate the wavelet coefficient matrix, using
Morse wavelets. Discretization is performed with a specified
number of sounds per octave of 10. The minimum and maxi-
mum scales are determined automatically based on the energy
spread of the wavelet in frequency and time [15]. After WT
processing, a 48*%200 coefficient matrix is generated due to 200
transient points and 48 WT-scales. According to the complex
wavelet coefficient matrix of 48*200, we combine the real
and imaginary parts to form a new matrix of 96%200, forming
the corresponding size of the diagram. Fig. 3 shows the WT
coefficient graphs of some LTE terminals after aforementioned
feature extraction. Significant difference could been found
among different LTE terminals.

III. AUTO-ENCODER FOR ROGUE TERMINAL
IDENTIFICATION

In most RFF related works, deep learning methods such as
CNN are mainly employed to solve multi-class classification
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Fig. 3. WT coefficient graphs of LTE PRACH transient part.

problem, which usually requires the priori knowledge of all
target terminals in the training stage. In the actual environment,
eNB needs to judge whether it is an authorized terminal or a
rogue terminal based on the first PRACH signal transmitted
by the LTE terminal. Therefore, we design an auto-encoder
(AE) with 2-D input for rogue terminal identification.

A. The Design of Auto-encoder

AE is an unsupervised neural network model designed
to learn how to represent the input information by taking
it as the learning object [8]. The input data is regarded
as the supervision to guide the neural network to learn a
mapping function, so as to obtain a reconstructed output.
When the difference between the output reconstructed by the
network and the original input exceeds a certain threshold, it
is considered as an anomaly.

Assume Pre(-) represents the function of data preprocess-
ing, which includes time synchronization, frequency offset
compensation of the raw I/Q samples and WT feature extra-
tion. The input of AE network could be denoted as [§]

X = Pre(S(t)), X € R®*™, ()

where n is the length of signal, s is the amount of WT-scales.
In order to make the output of the subsequent decoder between
0 and 1, eliminate differences between data categories, min-
max normalization is adopted, given as

X — min(X)
max(X) — min(X)’
Assume the function learned by the encoder is ¢y, (-,

where w and b is the network parameters, the input after
encoding can be expressed as

T = ¢up(X), T € BT “4)

X' = X' € [0,1)°*™. 3)

Similarly, the reconstructed output after decoding can be
described as
Y = pus(T),Y € R°*™, 5)

where ¢, ,(+) represents the operations at decoding layer.
Then the mean square error (MSE) function is applied to
evaluate the reconstruction error, defined as

M
1 2
MEX’Y:—E Yy - X’ 6

where M stands for the amount of training samples.

The WT coefficient graph is 2-D data, so we designed an AE
network for 2-D input. Fig. 4 depicts the structure and detailed
parameters of the AE network. The parameter selection is
mainly according to [2] and [8]. Firstly, the 96*200 graph is

TABLE I
LTE TERMINAL INFORMATION

Terminal Model | Manufacturer Serial Number

LTE1 Google nexus5 Google 0921£d20027fd130
LTE2 Google nexus5 Google 0666e7ac00616f3a
LTE3 Google nexus5 Google 09218647027fe738
LTE4 | Google nexus6P Huawei ENU7N16325682829
LTES5 Huawei P9 Huawei PBV5T16827001165
LTE6 Huawei P9 Huawei PBV7N16806010230
LTE7 Huawei P9 Huawei PBV7N16519005122
LTE8 USRP B205 - -

used as input, three convolution layers, two max-pooling layers
and four fully connected layers are added to the encoding
layer. The kernel size are chosen as [6 x 6], [5 x 5], [4 x 4]
for convolution, and [2 x 2] for max-pooling. Parameters of
each fully connected layer are also presented in Fig. 4. Then, a
completely symmetrical network structure forms the decoder,
which is composed of four fully connected layers, two up-
pooling layer and three deconvolution layers.

In the training phase, the AE network learns the information
of the input graph at the encoding layers, then restores the
same output as the input graph as much as possible at the
decoding layers. In the subsequent testing phase, the MSE
of the output and the original input graph is regarded as the
judgment basis for authorized terminal and rogue terminal.

B. Power-off Transient Part for WT Extraction

In order to search the PRACH preamble part with the most
distinguishable wavelet feature, we defined an MSE ratio to
evaluate the discrimination effect for AE, which is shown as

RMSE _ M]Ziagil:;’::ed’ (7)
where M SFEqythorized and M SE, g, represent the average
MSE of authorized and rogue terminals, respectively. It is ob-
viosu that the smaller the ratio is, the better the discrimination
effect is. We extract WT features from the power-on transient,
stable-state and power-off transient parts of LTE PRACH
preamble, and calculated Rj;gp for each part. The MSE
ratio is 0.6935, 0.9811 and 0.5896, respectively. Therefore, we
select power-off transient part to extract the wavelet coefficient
graph in subsequent experiments.

IV. EXPERIMENTAL SETUPS

We use the pseudo eNB to build the experimental system.
The corresponding uplink frequency is set to 2565MHz,
PRACH root sequence index is set to 0, and cyclic shift
interval is set to 13. As described in Section II-A, the 64
random PRACH preambles are all generated from the same
root sequence with the specified cyclic shift interval.

There were eight LTE terminals under test, including seven
mobile phones from two manufactures and one USRP B205.
The parameters of each terminal information are shown in Ta-
ble I. It is worth noting that Google Nexus6P is manufactured
by Huawei.
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Fig. 4. Structure of auto-encoder for WT coefficient graph.
the accessing PRACH preamble will be considered as a rogue
« 4.6m e 4.6m s terminal. It is obvious that the higher threshold value, the
A higher true positive rate (TPR), meanwhile the lower threshold
b3 «é)) value, the higher true negative rate (TNR). Therefore, we select
== pseudo eNB the threshold value when TPR equals to TNR. The TPR at this
threshold is defined as the verification accuracy of the current
® LTE terminal. The verification accuracy is calculated from the
E O 3 averaging result of 8 LTE terminals.
Two existing RFF extraction methods are compared as the

Door Door

1 NLOS LOS

Fig. 5. The acquisition location of our experiment

To evaluate the robustness of our proposed RFF identifica-
tion method, we captured the LTE terminal signals in LOS
and NLOS scenarios. An USRP N210 software defined radio
(SDR) platform was used for signal acquisition at the sampling
rate of 20MS/s. The acquisition location of our experiment
is shown in Fig. 5. We collected 4250 PRACH preambles
including three positions (P1, P2, and P3). 800 frames from P1
are used as training dataset. The residual frames are used as
testing dataset, which equally include 1150 collected PRACH
preambles in P1, P2 and P3.

The server configuration for training AE network in our
experiment is as follows: a GeForce RTX 2080 graphics
card, 4 Intel(R) Xeon(R) E5-2678 V3 @ 2.50GHz CPU with
12 cores. And the version of CUDA is 11.0. The average
training time is around 62.4s with 800 training frames and
100 iterations.

V. EXPERIMENTAL RESULTS AND ANALYSIS

LTE terminal verification performance is assessed for each
of the trials in Table I in which the selected 1 terminal consti-
tutes the authorized terminal and the remaining 7 terminals as
rogue terminals. According to Section III-A, the output MSE
of unknown terminals can be calculated through trained AE
network. After calculating the MSE of the input WT graph
from testing dataset, the threshold can be settled. The access-
ing PRACH preamble could be considered as an authorized
terminal when the MSE is lower than the threshold. Otherwise,

reference. The first one is HWT proposed in [12], which ex-
tracts the wavelet coefficients at 4 scales, draws the histogram
of the four groups of coefficients, and calculates the number
of wavelet coefficients within each numerical interval as the
input feature. The other one is PropFFT [11], which uses the
adjacent spectral differences of frequency domain stable-state
signal as the input feature. It is worth noting that features in
[12] and [11] are both 1-dimensional (1-D) input. Therefore,
we use 1-D convolution layer at the AE network. The kernel
size are chosen as [6 x 1], [5 x 1], [4 x 1] for convolution, and
[2 x 1] for max-pooling.

A. Performance of Different Positions

The results of different methods with training at P1 and
testing at different positions are shown in Fig. 6, where WT
is the method we introduced in this paper. It can be seen
that the verification accuracy of LOS and NLOS positions
both can reach nearly 90% by using our proposed method.
The accuracy of training position P1 is almost the same as
that of test positions P2 and P3. The average accuracy at
three testing positions is around 90.08%. As for HWT, the
verification accuracy can reach about 70%, but decline sharply
at P2. While for PropFFT, the verification accuracy is less than
70%, and also decrease dramatically at P2. When compared
to the PropFFT, WT provides the time-frequency localization
capability, while compared to HWT, more wavelet coefficients
are extracted in WT. In general, the proposed WT coefficient
graph based method has the best verification accuracy.

B. ROC Curve Analysis

Fig. 7 depicts the receiver operating characteristic (ROC)
curve for each terminal at P1. It can be seen that LTE4 and
LTES8 show the best verification performance, and the ROC
curves of them tend to be right-angle shape. According to
Table I, LTE4 is a Google mobile phone manufactured by
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Huawei, compared with other mobile phones from Huawei.
Similarly, LTE8 is a USRP device, which show great dif-
ference from mobile phones. It is also interesting that LTE2
and LTE3 own the worst verification performance. These two
mobile phones are both manufactured from Google with the
same model. Meanwhile, Huawei P9 phones tend to be easier
to be distinguished compared with Google Nexus5 phones,
the average verification accuracy of the former is 89.14%
and the latter is 85.76%. It can be inferred that mobile
phones from different manufacturers have different degrees of
distinctiveness in RFF identifications.

VI. CONCLUSION

In this paper, a WT based LTE RFF feature extraction
method is proposed. We select the power-off transient part of
PRACH preamble with the lowest MSE ratio for rogue LTE
terminal identification. A 2-D AE network is proposed for WT
coefficient graph feature. Extensive experiments are carried
out including 8 LTE terminals with 3 different locations.

The average verification accuracy can reach 90.08%, showing
great robustness both in LOS and NLOS scenarios, which
significantly outperform existing methods.
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