125 research outputs found

    Inflating hollow nanocrystals through a repeated Kirkendall cavitation process.

    Get PDF
    The Kirkendall effect has been recently used to produce hollow nanostructures by taking advantage of the different diffusion rates of species involved in the chemical transformations of nanoscale objects. Here we demonstrate a nanoscale Kirkendall cavitation process that can transform solid palladium nanocrystals into hollow palladium nanocrystals through insertion and extraction of phosphorus. The key to success in producing monometallic hollow nanocrystals is the effective extraction of phosphorus through an oxidation reaction, which promotes the outward diffusion of phosphorus from the compound nanocrystals of palladium phosphide and consequently the inward diffusion of vacancies and their coalescence into larger voids. We further demonstrate that this Kirkendall cavitation process can be repeated a number of times to gradually inflate the hollow metal nanocrystals, producing nanoshells of increased diameters and decreased thicknesses. The resulting thin palladium nanoshells exhibit enhanced catalytic activity and high durability toward formic acid oxidation

    Femtosecond laser surface structuring of silicon with Gaussian and optical vortex beams

    Get PDF
    We report an experimental analysis of femtosecond laser induced surface structuring of silicon by exploiting both Gaussian and Optical Vortex beams. In particular, we show how different surface patterns, consisting of quasi-periodic ripples and grooves, can be obtained by using different states of polarization offered by optical vortex beams. Both for Gaussian and optical vortex beams, an increase of the number of laser pulses, N, or beam energy, E-0, leads to a progressive predominance of the grooves coverage, with ripples confined in specific regions of the irradiated area at lower fluence. The average period of ripples and grooves shows a different dependence as a function of both E-0 and N, underlying important differences in mechanisms leading to the formation of ripples and grooves. In particular, our experimental characterization allows identifying a preliminary stage of grooves generation with rudimental surface structures, preferentially directed parallel to the laser polarization. This supports the idea that one possible mechanism of grooves formation lies in the progressive aggregation of clusters of nanopartides densely decorating the ripples. Our experimental findings provide important indications on the basic understanding of the processes involved in laser surface structuring with ultrashort pulses that can guide the design of the surface patterns. (C) 2016 Elsevier B.V. All rights reserved

    Structural Damage Identification of Pipe Based on GA and SCE-UA Algorithm

    Get PDF
    Structure of offshore platform is very huge, which is easy to be with crack caused by a variety of environmental factors including winds, waves, and ice and threatened by some unexpected factors such as earthquake, typhoon, tsunami, and ship collision. Thus, as a main part of the jacket offshore platform, pipe is often with crack. However, it is difficult to detect the crack due to its unknown location. Genetic algorithm (GA) and SCE-UA algorithm are used to detect crack in this paper, respectively. In the experiment, five damages of the pipe in the platform model can be intelligently identified by genetic algorithm (GA) and SCE-UA. The network inputs are the differences between the strain mode shapes. The results of the two algorithms for structural damage diagnosis show that both of the two algorithms have high identification accuracy and good adaptability. Furthermore, the error of SCE-UA algorithm is smaller. The results also suggest that the structural damage of pipe can be identified by intelligent algorithm

    Efficient Er/O‐Doped Silicon Light‐Emitting Diodes at Communication Wavelength by Deep Cooling

    Full text link
    A silicon light source at the communication wavelength is the bottleneck for developing monolithically integrated silicon photonics. Doping silicon with erbium and oxygen ions is considered one of the most promising approaches to produce silicon light sources. However, this method suffers from a high concentration of defects in the form of nonradiative recombination centers at the interface between the crystalline silicon and large Er2O3/ErSi1.7 precipitates during the standard rapid thermal treatment. Here, a deep cooling process is applied to suppress the growth of these precipitates by flushing the high‐temperature Er/O‐doped silicon substrates with helium gas cooled in liquid nitrogen. The resultant light‐emitting efficiency at room temperature is enhanced by two orders of magnitude in comparison with that of the sample treated via standard rapid thermal annealing. The deep‐cooling‐processed Si samples are further processed into light‐emitting diodes. Bright electroluminescence with a main spectral peak at 1536 nm is also observed from the silicon‐based diodes with the external quantum efficiency reaching ≈0.8% at room temperature. Based on these results, the development of electrically driven silicon optical amplifiers or even lasers at communication wavelengths is promising for monolithically integrated silicon photonics.A deep cooling technique is developed for silicon light sources by suppressing the growth of Er/O‐related precipitates. The resultant near‐infrared emission shows efficiency enhancement by two orders of magnitude. Bright electroluminescence with a main spectral peak at 1536 nm is also observed. The external quantum efficiency can reach 0.8% at room temperature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162702/3/adom202000720.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162702/2/adom202000720-sup-0001-SuppMat.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162702/1/adom202000720_am.pd

    Rationally Designed Sodium Chromium Vanadium Phosphate Cathodes with Multi-Electron Reaction for Fast-Charging Sodium-Ion Batteries

    Get PDF
    Sodium super-ionic conductor (NASICON)-structured phosphates are emerging as rising stars as cathodes for sodium-ion batteries. However, they usually suffer from a relatively low capacity due to the limited activated redox couples and low intrinsic electronic conductivity. Herein, a reduced graphene oxide supported NASICON Na3Cr0.5V1.5(PO4)3 cathode (VC/C-G) is designed, which displays ultrafast (up to 50 C) and ultrastable (1 000 cycles at 20 C) Na+ storage properties. The VC/C-G can reach a high energy density of ≈470 W h kg−1 at 0.2 C with a specific capacity of 176 mAh g−1 (equivalent to the theoretical value); this corresponds to a three-electron transfer reaction based on fully activated V5+/V4+, V4+/V3+, V3+/V2+ couples. In situ X-ray diffraction (XRD) results disclose a combination of solid-solution reaction and biphasic reaction mechanisms upon cycling. Density functional theory calculations reveal a narrow forbidden-band gap of 1.41 eV and a low Na+ diffusion energy barrier of 0.194 eV. Furthermore, VC/C-G shows excellent fast-charging performance by only taking ≈11 min to reach 80% state of charge. The work provides a widely applicable strategy for realizing multi-electron cathode design for high-performance SIBs

    “Mn-locking” effect by anionic coordination manipulation stabilizing Mn-rich phosphate cathodes

    Get PDF
    High-voltage cathodes with high power and stable cyclability are needed for high-performance sodium-ion batteries. However, the low kinetics and inferior capacity retention from structural instability impede the development of Mn-rich phosphate cathodes. Here, we propose light-weight fluorine (F) doping strategy to decrease the energy gap to 0.22 eV from 1.52 eV and trigger a “Mn-locking” effect—to strengthen the adjacent chemical bonding around Mn as confirmed by density functional theory calculations, which ensure the optimized Mn ligand framework, suppressed Mn dissolution, improved structural stability and enhanced electronic conductivity. The combination of in situ and ex situ techniques determine that the F dopant has no influence on the Na+ storage mechanisms. As a result, an outstanding rate performance up to 40C and an improved cycling stability (1000 cycles at 20C) are achieved. This work presents an effective and widely available light-weight anion doping strategy for high-performance polyanionic cathodes

    Plasmonically enhanced photoluminescence of monolayer MoS2 via nanosphere lithography-templated gold metasurfaces

    Get PDF
    We demonstrate a simple, cost-effective method to enhance the photoluminescence intensity of monolayer MoS2. A hexagonal symmetric Au metasurface, made by polystyrene nanosphere lithography and metal coating, is developed to enhance the photoluminescence intensity of monolayer MoS2. By using nanospheres of different sizes, the localized surface plasmon resonances of the Au metasurfaces can be effectively tuned. By transferring monolayer MoS2 onto the Au metasurface, the photoluminescence signal of the monolayer MoS2 can be significantly enhanced up to 12-fold over a square-centimeter area. The simple, large-area, cost-effective fabrication technique could pave a new way for plasmon-enhanced light-mater interactions of atomically thin two-dimensional materials.This work was supported in part by National Natural Science Foundation of China (Grant No. 62075093 and 61805113), China Postdoctoral Science Foundation (2020M672697), Natural Science Foundation of Guangdong Province (Grant No. 2018A030310224 and 2019A1515110864), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2017ZT07C071), and Shenzhen Science and Technology Innovation Commission (Grant No. GJHZ201809281552 07206, JCYJ20170817111349280, and JCYJ2018030518063 5082). Meng Zhao acknowledges the support from the Agency for Science, Technology and Research (A*STAR) (Grant No. 152700014 and H19H6a0025)

    GRIK3 rs490647 is a Common Genetic Variant between Personality and Subjective Well-being in Chinese Han Population

    Get PDF
    Personality and subjective well-being (SWB) have been suggested to be strongly related in previous studies. This study was intended to confirm the relationship between personality and SWB and tried to seek out the genetic variants which underlie both personality and SWB. The subjects were 890 participants from Chinese Han population. We evaluated their personality using the Big Five Inventory (BFI) and used the Satisfaction With Life Scale (SWLS) to reflect their SWB. Five single nucleotide polymorphisms (SNPs) were selected from the literature (rs1426371, rs2164273, rs322931, rs3756290, rs490647) and genotyped for genetic association study. We found negative correlations between neuroticism and SWB. On the contrary, extraversion and agreeableness were positively associated with SWB. Three SNPs (rs2164273, rs3756290, rs490647) out of the five were found to connect with personality (extraversion, neuroticism, conscientiousness and openness to experience) and rs490647 variants of GRIK3 was also associated with SWB. Individuals carrying G allele at this site were predisposed to have lower risk to be neuroticism and greater chance to be extraverted, open and satisfied with their life. In summary, our study revealed that rs490647 might be a good candidate genetic variant for personality and SWB in Chinese Han population

    Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity

    Get PDF
    Modulation of nitric oxide (NO) on ion homeostasis, by enhancing salt secretion in the salt glands and Na+ sequestration into the vacuoles, was investigated in a salt-secreting mangrove tree, Avicennia marina (Forsk.) Vierh. The major results are as follows: (i) under 400 mM NaCl treatment, the application of 100 mu M sodium nitroprusside (SNP), an NO donor, significantly increased the density of salt crystals and salt secretion rate of the leaves, along with maintaining a low Na+ to K+ ratio in the leaves. (ii) The measurement of element contents by X-ray microanalysis in the epidermis and transversal sections of A. marina leaves revealed that SNP (100 mu M) significantly increased the accumulation of Na+ in the epidermis and hypodermal cells, particularly the Na+ to K+ ratio in the salt glands, but no such effects were observed in the mesophyll cells. (iii) Using non-invasive micro-test technology (NMT), both long-term SNP (100 mu M) and transient SNP (30 mu M) treatments significantly increased net Na+ efflux in the salt glands. On the contrary, NO synthesis inhibitors and scavenger reversed the effects of NO on Na+ flux. These results indicate that NO enhanced salt secretion by increasing net Na+ efflux in the salt glands. (iv) Western blot analysis demonstrated that 100 mu M SNP stimulated protein expressions of plasma membrane (PM) H+-ATPase and vacuolar membrane Na+/H+ antiporter. (v) To further clarify the molecular mechanism of the effects of NO on enhancing salt secretion and Na+ sequestration, partial cDNA fragments of PM H+-ATPase (HA1), PM Na+/H+ antiporter (SOS1) and vacuolar Na+/H+ antiporter (NHX1) were isolated and transcriptional expression of HA1, SOS1, NHX1 and vacuolar H+-ATPase subunit c (VHA-c1) genes were analyzed using real-time quantitative polymerase chain reaction. The relative transcript abundance of the four genes were markedly increased in 100 mu M SNP-treated A. marina. Moreover, the increase was reversed by NO synthesis inhibitors and scavenger. Taken together, our results strongly suggest that NO functions as a signal in salt resistance of A. marina by enhancing salt secretion and Na+ sequestration, which depend on the increased expression of the H+-ATPase and Na+/H+ antiporter.Natural Science Foundation of China (NSFC) [30930076, 30770192, 30670317, 30271065, 39970438]; Foundation of the Chinese Ministry of Education [209084]; Xiamen University [NCETXMU X071l5]; Changjiang Scholarship [X09111
    • 

    corecore