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Abstract: We demonstrate a simple, cost-effective
method to enhance the photoluminescence intensity of
monolayerMoS2. A hexagonal symmetric Aumetasurface,
made by polystyrene nanosphere lithography and metal
coating, is developed to enhance the photoluminescence
intensity of monolayer MoS2. By using nanospheres of
different sizes, the localized surface plasmon resonances
of the Au metasurfaces can be effectively tuned. By
transferringmonolayerMoS2 onto the Aumetasurface, the
photoluminescence signal of the monolayer MoS2 can be
significantly enhanced up to 12-fold over a square-
centimeter area. The simple, large-area, cost-effective
fabrication technique could pave a new way for plasmon-

enhanced light-mater interactions of atomically thin two-
dimensional materials.

Keywords: metasurface; MoS2; self-assembly; surface
plasmon; photoluminescence.

1 Introduction

Atomically thin two-dimensional transition metal dichal-
cogenides (2D TMDCs) have been intensively investigated in
recent years due to their unique physical and chemical
properties [1–4].With rapiddevelopment of nanofabrication
and nanosynthesis techniques, their optical, electrical,
electrochemical, and structural properties have been
constantly improved [5–10]. Being a direct band gap semi-
conductor, monolayer (1-L) MoS2 promises great potential
for a wide range of applications such as field effect tran-
sistors [11], photodetectors [12, 13], and flexible electronics
[14, 15]. However, due to its low dimension, the light–matter
interaction for MoS2 is extremely weak; in addition, the
defects are inevitable during the process of fabrication. As a
result, the quantumefficiency inside theMoS2 is usually less
than 1% [16, 17] and the photoluminescence (PL) of MoS2 is
extremelyweak aswell, limiting its potential applications to
a great extent.

Various strategies have been put forward to enhance
the PL emission of 2D TMDCs, which can bemainly divided
into two categories: chemical treatment and physical
assistance. Chemical treatment for the 1-L MoS2 improves
the PL intensity by fixing the atom vacancies and modi-
fying the electron density [18–20]. By chemical treatment
on 1-L MoS2, the quantum efficiency can be improved to
near unity from 0.6% and the PL intensity can experience
an over 150 times enhancement. However, the chemically
treated samples require extremely dry air environment,
which is not favorable for the subsequent device fabrica-
tion and processing. Physical assistance mainly depends
on the localized electromagnetic effects that can be created
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by either plasmonic [21–29], dielectric [30–35] or metal-
dielectric hybrid [36] nanoparticles/nanostructures.
Comparatively, plasmonic nanomaterials provide large PL
enhancement factor and wide tunability since the plas-
monic resonances are highly dependent on the size, the
shape and the spatial arrangement of nanoparticles/
nanostructures. In particular, plasmonic metasurfaces (2D
subwavelength metallic nanostructures) are highly ad-
vantageous due to their large-scattering cross section and
local electromagnetic field enhancement near the surface
of the metallic nanostructure. As a result, they can greatly
enhance the light–matter interactions between the plas-
monicmetasurface and 2DTMDCs, leading to the enhanced
PL emission [37]. As an ultrathin active layer, 2Dmonolayer
TMDC becomes optically thick but physically thin to pre-
serve the monolayer properties, thereby potentially lead-
ing to many optoelectronic applications with ultrathin,
compact and integratable features.

However, due to the subwavelength feature of plas-
monic metasurfaces, it still remains a grand challenge to
achieve large-area, cost-effective fabrication strategy. Most
of the state-of-the-art plasmonic metasurfaces have been
made through the sophisticated nanofabrication tech-
niques, such as electron-beam lithography (EBL), focused-
ion beam (FIB) milling, self-assembly, etc. For examples,
Butun et al. prepared Ag nanodisk arrays using EBL to
enhance the PL intensity of 1-L MoS2 [22]. By adjusting the
size of Ag nanodisks (106–227 nm), the PL intensity was
increased by 12 times. They proved that the PL enhance-
ment came from the enhancement of the excitation field at
the wavelength of pump laser and the effective scattering
at the wavelength of exciton emission. Lee et al. proposed
the MoS2-Ag “bow-tie” resonant array system [23]. By
adjusting the spacing of Ag nanoparticles in the silver-
bowtie nanoantenna array, a strong coupling between
MoS2 excitons and the surface plasmons on the grid surface
was achieved. Through localized surface plasmon reso-
nance (LSPR) effect and Fano resonance, the PL intensity of
1-L MoS2 had been increased by 40 times. More economical
methods to enhance PL intensity were demonstrated by
randomly attaching Au nanoparticles to TMDCs [24, 25].
Upon excitation, the created LSPRs from the Au nano-
particles will modify the local density of states of the
TMDCs, hence causing the enhanced PL intensity.
Although the PL of TMDCs can be largely enhanced via the
random assembly of plasmonic nanoparticles, there is still
room for improvement in terms of large-area uniformity
and enhancement factor.

The aforementioned EBL and FIB techniques require
complicated, costly processes and intensive, skillful
labor, which are nonpreferred for large-area fabrication.

Comparatively, self-assembly is a simple, cost-effective
technique but lacks the accurate control of patterning,
especially for plasmonic nanoparticles. Large-area self-as-
sembly of polystyrene (PS) nanosphere can be achieved
with the nanosphere size of 200 nm [38]. However, addi-
tional complicated surface modifications for colloidal
nanosphere are required. In our previous report [39], we
have developed an improved self-assembly method to
obtain a large-area, high-qualitymonolayer PSnanospheres
with simple additional steps compared to the conventional
self-assembly method. By exploiting the monolayer PS
nanospheres as a templatedmask,we can fabricate a variety
of periodic three-dimensional hierarchically ordered meta-
structures using cyclic inductively coupled plasma etching
technique. In this work, hexagonal Au metasurfaces are
fabricated using the nanosphere lithography technique,
which is based on the templated masks via the self-
assembled polystyrene nanospheres. By transferring the
monolayer MoS2 onto these Au metasurfaces, the PL signal
of themonolayer MoS2 can be significantly enhanced. Upon
excitation by a 405 nm laser beam, the plasmonically
enhanced monolayer MoS2 exhibits a 12-fold increase in PL
intensity over a large area. Experimental results show that
our proposed approach is a simple, large-area, and cost-
effective fabrication technique,which couldpaveanewway
for plasmon-enhanced light-mater interactions such as
photoexcitation and nonlinear optics of 2D TMDCs.

2 Materials and methods

2.1 Templated masks preparation

The PS nanosphere latex solutions (2.5 wt% dispersion in water) with
different nanosphere sizes in diameter (350, 400, 500, 600, and
750 nm) were purchased from Alpha Aesar Chemical Co., LTD
(Shanghai, China) and Shanghai Aladdin Bio-Chem Technology Co.,
LTD (Shanghai, China). Prior to making templated masks by nano-
sphere self-assembly, the glass substrates were subsequently cleaned
with acetone, ethanol, isopropanol and deionized (DI) water in an
ultrasonic cleaner (KQ-250DE, Kun Shan Ultrasonic Instruments Co.,
Ltd), and then followed by 15 min treatment in a UV-O3 cleaner
(BZS250GF-TC, HWOTECH). The templated masks for nanosphere
lithography consisted of a monolayer of PS nanospheres, which were
formed on the glass substrate via an improved self-assembly method
at the air–liquid interface [33].

2.2 Gold metasurface fabrication

Once the monolayer-PS-nanosphere templated masks were ready, a
2 nm thick Cr layer and a 50-nm-thick gold film were sequentially
deposited on the templated masks by an electron-beam evaporator
(TF500, BritishHHV). The ultrathin Cr film served as an adhesion layer
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in our experiments. To reduce the surface roughness and strengthen
the adhesion of the Au film simultaneously, the evaporation rates in
the deposition process were controlled to be ∼0.2 Å/s for the Cr film
and ∼0.5 Å/s for the Au film, respectively. During the deposition
process, the vacuum level inside the evaporator chamber was
controlled at 5 × 10−6 Torr. After deposition, the Au-coated templated
masks were soaked into the DI water to remove the PS nanospheres
with the help of ultrasonic cleaner. The removing process was carried
out at the power of 90W and lasted for 1 min. Finally, we achieved the
gold metasurface on the glass substrates.

2.3 Transfer of 1-L MoS2

The CVD-grown 1-L MoS2 samples on the Si substrates (SIX-Carbon
Inc., China) were used in our experiments. TheMoS2 was a continuous
filmwith a size of 1 × 1 cm2, which can be easily stripped off from the Si
substrate without any additional treatment. The Si substrate with the
1-L MoS2 was slowly immersed into the DI water with a tilt angle of
∼45°. Due to the surface tension of water, the 1-L MoS2 atomic film
separated from the Si substrate and then floated on the water surface.
Meanwhile, the Si substrate sunk into the water bottom. After that, the
hydrophilically treated Au metasurface was used to pick up the
floatingMoS2 film.We immersed the target substrate into the DI water,
kept an angle of ∼45°with respect to thewater surface, and pick up the
MoS2 film gently. Please also refer to the supplementary videos of the
transfer process in the supporting information.

2.4 Characterization and measurements

Surface morphologies of the Au metasurfaces were investigated using
the field-emission scanning electron microscopy (FESEM, Merlin,
Zeiss) and atomic force microscope (AFM, Ahpha300, WITec). The
optical spectra of the Aumetasurfaces were collected by a UV-Vis-NIR
microspectrophotometer (CRAIC technologies Inc.).We carried out the
Raman spectra measurement and Raman mapping to confirm the
transferred 1-L MoS2 on the gold metasurface using a confocal Raman
system (Alpha300, WITec). We used a 100× objective lens to focus the
excitation laser light (working wavelength: 532 nm) onto the samples
and collect the Raman signal to the spectrometer. For PL test, a laser
with the working wavelength of 405 nm was used for the MoS2 exci-
tation, and a 100× objective with the numerical aperture of 0.8 was
used to focus the laser beam onto the 1-L MoS2 sample and collect the
emitted PL signals simultaneously. A 450 nm long-pass filter was put
in the PL collection light path to block the reflected laser light. The PL
spectra were measured under a microscopy-combined spectrometer
system (MA01720, Princeton Instruments). To ensure the repeatability
of the PL spectra and exclude the subtle differences between different
areas on each sample, the PL signal was taken and averaged at
randomly selected 10 positions within an area of 1 × 1 cm2 on every
single sample under the same experimental conditions.

2.5 Simulation

The optical fields and transmission spectra were calculated using the
finite-difference time-domain (FDTD) method. The dispersion of gold
is based on Johnson and Christymodel. The simulation area was set to
allow only one period of the gold metasurface in the x-y plane and
enough space for the light source and power monitors. Auto-uniform

meshing with the finest meshes (2 nm minimum mesh step) was used
to achieve the accurate results. The light source was selected with the
wavelengths ranging from400 to 1300nm. Three powermonitorswere
separately located 5 nm above the Au metasurface, 1 μm above the
light source and 3 μm below the gold metasurface to collect electric
field intensity, reflected and transmitted optical signals.

3 Results and discussion

Figure 1a is a schematic illustration of the 1-L MoS2-covered
Au metasurface. The surface morphologies of all the meta-
surfaces fabricated from the templated masks using the PS
nanospheres with different sizes (350, 400, 500, and 600 nm
in diameter) have been characterized under the SEM, as
shown in Figure S1. As mentioned above, we used contin-
uous monolayer MoS2 rather than single crystalline one
during the transfer process. Such a large-scale, CVD-grown
MoS2 monolayer covers the Au metasurface evenly. In
addition, there was no requirement of a support layer during
the wet transfer, hence avoiding pollution effectively [40].
The purchased 1-L MoS2 samples and the fabricated meta-
surfaces were characterized using AFM, as shown in
Figure S2. The measured thicknesses of 1-L MoS2 and meta-
surfaces are∼1 and∼50nm, respectively. Figure 1b shows the
optical image of 1-LMoS2-coveredAumetasurface,where the
metasurface was fabricated from the templated mask using
the PS nanospheres with the diameter of 750 nm. A clear
boundary of the MoS2 is marked by the black dashed line.

During the transfer process, the 1-L MoS2 could be fol-
ded, stacked or damaged due to improper handling. To
ensure that the transferred MoS2 was still a monolayer, we
carried out Raman spectra measurement on the transferred

samples. As known, for the 1-L MoS2, the E
1
2g (in plane) and

A1g (out of plane) are themain vibrationmodes that locate at
∼384 and ∼403 cm−1, respectively [41, 42]. Depending on the
experimental environment, the specific positions of these
two characteristic Ramanpeaks of 1-LMoS2might be slightly
different, however, their spacing is usually fixed. Figure 1c
shows the Raman spectra of 1-L MoS2 transferred onto the
Au metasurface. We can see that after transfer, the wave-

number spacingbetween theA1g andE
1
2g modes still remains

18 cm−1, confirming that the transferred MoS2 onto the Au
metasurface is still a monolayer. In order to verify that the
1-LMoS2 transferred onto Aumetasurface still remains good
quality, a 10 × 10 μm2 Raman mapping covering the
boundary was carried out, as shown in Figure 1d. The con-
tinuity and integrity of transferred 1-L MoS2 can be directly
resolved by the distribution and variation of the A1g signal
intensity. In themapping results, the distribution of A1 peak

and E1
2g peak are almost the same.
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The fabricated Au metasurfaces consist of hexagonally
arranged triangle prisms. Each triangle prism is expected to
produce strong LSPRs upon excitation, which will then
enhance the absorption and emission efficiency of the 1-L
MoS2. In our study, we fabricated the Au metasurfaces with
different periods and unit sizes, which were highly depen-
dent on the templated masks by the self-assembled nano-
spheres of different sizes. It is straightforward that the LSPRs
of Au metasurfaces are highly dependent on structural pa-
rameters. Figure 2 shows the measured and simulated
spectra of the Aumetasurfaces that were fabricated from the
templated masks with different nanosphere sizes (350, 400,

500, 600, and 750 nm in diameter). From the simulated
results in Figure 2d, for the Au metasurface made by nano-
spheres with the size of 350 nm, the absorptance peak lo-
cates ∼670 nm. With the nanosphere diameter changing
from 350 to 750 nm, the period of the Au metasurface in-
creases, and the individual Au unit structure becomes large
as well (see Figure S1). As a result, the absorptance peaks of
theAumetasurfaces demonstrate a clear red shift from∼670
to ∼1200 nm, showing a broad absorption tuning range.
Meanwhile, the transmittance and the reflectance spectra
exhibit the similar trend as the absorptance ones. The
experimental results are also in reasonable agreement with

Figure 1: (a) Schematic of a 1-L MoS2-covered
Au metasurface on a glass substrate, and
the crystal structure of 1-L MoS2 is shown in
the inset. (b) Optical image of 1-L MoS2-
covered Au metasurface. A clear boundary
of the MoS2 is marked by the black dashed
line. The arrow points out the crack on
MoS2. Inset shows a typical SEM image of
the Au metasurface fabricated from the
templated mask using the PS nanospheres
with the diameter of 750 nm. (c) Raman
spectra of MoS2 transferred onto metasur-
face. With the peaks fitting, the Raman shift
between A1g mode and E12g remains 18 cm−1.
(d) Raman mapping for boundary area with
the collected signal of A1g peak.
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Figure 2: Measured (a–c) and simulated (d–f) absorptance (a, d), transmittance (b, e), and reflectance (c, f) spectra of the Au metasurfaces.
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the simulation and show a similar trend as the simulated
results. It is worth mentioning that there are also discrep-
ancies between experimental and simulated results, which
could be mainly attributed to the fabrication errors and the
defects in the fabricated samples.

We subsequently investigated the effect of Au meta-
surfaces on the PL emission using a semiconductor laser
(405 nm) as the pumping source. We pumped the 1-L MoS2-
covered Aumetasurfaces at various pumping intensities. As
a control experiment, we also studied the PL of the non-
transferred 1-L MoS2 as a function of excitation laser in-
tensity, as shown in Figure 3a. It can be clearly seen that as
the laser intensity increases, the PL intensity becomes
strong. The primary PL peak locates at 672 nm. At a higher
excitation intensity, we also notice an emergence of a sec-
ondary PL peak, locating at ∼620 nm. It is well-known that
these twomainpeaks locating at 672 and 623 nmcorrespond
to the A1 and B1 band transitions of 1-L MoS2 [43, 44].

Compared to B1 band transition related to E1
2g (in plane)

mode, A1 band related to A1g (out of plane) transition has
higher PL intensity and more sensitive to the Au metasur-
face [18]. Figure 3b shows measured PL intensity of the 1-L
MoS2 on the Aumetasurfaces that were fabricated from self-
assembled nanospheres with different sizes at a fixed
pumping intensity. At the fixed pumping intensity of
7.8 mW/cm2, compared Figure 3b to Figure 3a, there is sig-
nificant enhancement of A–exciton emission due to the
addition of the Au metasurface compared to the non-
transferred sample. It canbealso clearly seen fromFigure 3b
that as the size of the PS nanospheres decreases, the PL
enhancement becomes significantly prominent. In addition,
the secondary PL peak at ∼620 nm (corresponding to
B-exciton emission) has been greatly suppressed, which
might be attributed to the absorption of Au metasurfaces.

The PL spectra of the 1-L MoS2 on different Au meta-
surfaces under various pumping intensities have been also
investigated and the results are summarized in Figure S3.
From Figure S3 and Figure 3b, we can see that there is
different enhancement of PL signals for each Au metasur-
face. It is obvious that among the Au metasurfaces in our
experiments, the onemade by nanospheres with the size of
350 nm in diameter provides the largest enhancement. To
directly illustrate the enhancement effect of Au metasur-
face, we have plotted the PL peak intensity as a function of
the excitation laser intensity, as shown in Figure 3c. It is
obvious that for all cases, the PL peak intensity consis-
tently changes linearly with the excitation laser intensity.
Therefore, with the PL intensity of the nontransferred case
as a baseline, the slope of each fitting line indicates the
enhancement factor provided by the Au metasurfaces.

The enhanced PL from the 1-L MoS2 could be attributed
to the enhanced absorption or emission or both. Upon the
laser excitation, the Au metasurfaces could be resonantly
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corresponds to the color of the fitted spots.

Z. Wang et al.: Plasmonically enhanced photoluminescence 1737



excited. As a result, strong LSPRs are induced around each
unit, producing a large |E|2 near the 1-L MoS2 and subse-
quently enhancing the absorption efficiency of the 1-LMoS2.
On the other hand, the strong LSPRs could also modify the
local density of states in the 1-L MoS2 due to the well-known
Purcell effect [45–47], resulting in an additional emission
pathway for the MoS2 and further enhancing PL. We also
derived enhancement factor of each Au metasurface from
the slopes of each fitting line, as shown in Figure 4a. Among
the investigated Au metasurfaces in our experiments, we
can see from Figure 4a that as the nanosphere diameter
increases, the enhancement factor gradually decreases. In
our experiments, the Au metasurfaces made by the nano-
spheres with the size of 350 and 750 nm provide the
maximum andminimum enhancement factors (i.e., 12× and
2×), respectively. We have also numerically calculated the
local field enhancement of the Au metasurfaces under the
excitation and emission wavelengths (405 and 677 nm, see
Figure 4b and c), respectively. The calculation details can be
found in the supporting information. We have also numer-
ically calculated the near-field electric field distributions of
the Au metasurfaces at the excitation and emission wave-
lengths, as shown in Figure S4 in the supporting informa-
tion. From Figure S4, we can confirm that the PL
enhancement mainly arises from single Au triangle plas-
monic modes rather than the coupling effect between two
triangle prisms because the triangles are spaced too far to
form strong couplings. It is worth noting that the gap be-
tween the adjacent triangles canbe further tuned via etching
nanosphere first before the gold film deposition [48]. By
precisely controlling the gap size, strong plasmonic cou-
plings can be achieved to further enhance the PL signal. It is
also worth mentioning that we only numerically calculated
local field enhancement around the Au triangles in the Au
metasurfaces at the excitation and emission wavelengths in
Figure 4b and c, meaning that we neglected the other areas
where there are no Au triangles in the Au metasurfaces.
From the SEM images of Au metasurfaces in Figure S1, the
Au triangles only account for a small fraction of the whole
metasurface area. As a result, the achieved enhancement
factor becomes smaller by taking into account of PL
contribution from the whole area of Au metasurface. As
shown in Figure 4b and c, |Eavg|2 decreases as the nano-
sphere diameter increases for both excitation and emission
wavelengths. Interestingly, |Eavg|2 for both cases experi-
ences the coincidently same trend as the measured
enhancement factor, indicating that the strong LSPRs
generated from the Au metasurfaces indeed enhance both
absorption and emission of the 1-L MoS2. From Figure 4, we
could foresee that as the nanosphere size further decreases,
the enhancement factor will become larger. For example,

the numerical results show that the enhancement factor will
reach 23 upon using the nanospheres with the diameter of
200 nm. However, in our experiments, the fabrication of the
large-area Au metasurfaces becomes challenging when the
diameter of thenanospheres is less than 300nm. The further
improvement of the self-assembly process and precise gap
tuning with small nanospheres is still undergoing.

4 Conclusion

In summary,wehave demonstrated a simple, cost-effective
approach to enhance the PL signal of the monolayer MoS2.
Hexagonal Au metasurfaces were fabricated from the
templated masks that were formed by self-assembled
polystyrene nanospheres. By transferring the monolayer
MoS2 onto these Au metasurfaces, the PL signal of the
monolayer MoS2 can be significantly enhanced. Under a
405 nm laser beam excitation, the LSPR-enhanced mono-
layer MoS2 exhibited a 12-fold increase in PL over a large
area.We expect our proposed approach could pave theway
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for many potential applications based on plasmon-
enhanced 2D TMDCs.
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Supplementary Material: The online version of this article offers sup-
plementary material (https://doi.org/10.1515/nanoph-2020-0672).

Detailed description of SEM images of Au metasurfaces, AFM
images of nontransferred 1-L MoS2 and Au metasurface, PL spectra of
the 1-L MoS2 on Au metasurfaces, and calculation of average E-field
intensity.
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