82 research outputs found

    CAMKs support development of acute myeloid leukemia.

    Get PDF
    BACKGROUND: We recently identified the human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse ortholog-paired Ig-like receptor (PirB) as receptors for several angiopoietin-like proteins (Angptls). We also demonstrated that PirB is important for the development of acute myeloid leukemia (AML), but exactly how an inhibitory receptor such as PirB can support cancer development is intriguing. RESULTS: Here, we showed that the activation of Ca (2+)/calmodulin-dependent protein kinases (CAMKs) is coupled with PirB signaling in AML cells. High expression of CAMKs is associated with a poor overall survival probability in patients with AML. Knockdown of CAMKI or CAMKIV decreased human acute leukemia development in vitro and in vivo. Mouse AML cells that are defective in PirB signaling had decreased activation of CAMKs, and the forced expression of CAMK partially rescued the PirB-defective phenotype in the MLL-AF9 AML mouse model. The inhibition of CAMK kinase activity or deletion of CAMKIV significantly slowed AML development and decreased the AML stem cell activity. We also found that CAMKIV acts through the phosphorylation of one of its well-known target (CREB) in AML cells. CONCLUSION: CAMKs are essential for the growth of human and mouse AML. The inhibition of CAMK signaling may become an effective strategy for treating leukemia

    Immunoglobulin G Locus Events in Soft Tissue Sarcoma Cell Lines

    Get PDF
    Recently immunoglobulins (Igs) have been found to be expressed by cells other than B lymphocytes, including various human carcinoma cells. Sarcomas are derived from mesenchyme, and the knowledge about the occurrence of Ig production in sarcoma cells is very limited. Here we investigated the phenomenon of immunoglobulin G (IgG) expression and its molecular basis in 3 sarcoma cell lines. The mRNA transcripts of IgG heavy chain and kappa light chain were detected by RT-PCR. In addition, the expression of IgG proteins was confirmed by Western blot and immunofluorescence. Immuno-electron microscopy localized IgG to the cell membrane and rough endoplasmic reticulum. The essential enzymes required for gene rearrangement and class switch recombination, and IgG germ-line transcripts were also identified in these sarcoma cells. Chromatin immunoprecipitation results demonstrated histone H3 acetylation of both the recombination activating gene and Ig heavy chain regulatory elements. Collectively, these results confirmed IgG expression in sarcoma cells, the mechanism of which is very similar to that regulating IgG expression in B lymphocytes

    Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer

    Get PDF
    Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.acceptedVersionPeer reviewe

    Analysis on Spatial Pattern of Land Use Based on Fractal Theory: A Case Study of a Southwest Town

    No full text
    Based on GIS, RS technology and fractal theory, this paper analyzes land use type of a southwest town in 2010. It obtains fractal model, fractal dimension and stability index of land use types, which will provide favorable reference for healthy social and economic development of this town and scientific decision making for rational control of land resource

    Exogenous antibiotic resistance gene contributes to intestinal inflammation by modulating the gut microbiome and inflammatory cytokine responses in mouse

    No full text
    ABSTRACTDysregulation of the gut microbiota by environmental factors is associated with a variety of autoimmune and immune-mediated diseases. In addition, naturally-occurring extracellular antibiotic resistance genes (eARGs) might directly enter the gut via the food chain. However, following gut microbiota exposure to eARGs, the ecological processes shaping the microbiota community assembly, as well as the interplay between the microbiota composition, metabolic function, and the immune responses, are not well understood. Increasing focus on the One Health approach has led to an urgent need to investigate the direct health damage caused by eARGs. Herein, we reveal the significant influence of eARGs on microbiota communities, strongly driven by stochastic processes. How eARGs-stimulate variations in the composition and metabolomic function of the gut microbiota led to cytokine responses in mice of different age and sex were investigated. The results revealed that cytokines were significantly associated with immunomodulatory microbes, metabolites, and ARGs biomarkers. Cytokine production was associated with specific metabolic pathways (arachidonic acid and tryptophan metabolic pathways), as confirmed by ex vivo cytokine responses and recovery experiments in vivo. Furthermore, the gut microbial profile could be applied to accurately predict the degree of intestinal inflammation ascribed to the eARGs (area under the curve = 0.9616). The present study provided a comprehensive understanding of the influence of an eARGs on immune responses and intestinal barrier damage, shedding light on the interplay between eARGs, microbial, metabolites, and the gut antibiotic resistome in modulating the human immune system
    • …
    corecore