128 research outputs found

    Extend Wave Function Collapse to Large-Scale Content Generation

    Full text link
    Wave Function Collapse (WFC) is a widely used tile-based algorithm in procedural content generation, including textures, objects, and scenes. However, the current WFC algorithm and related research lack the ability to generate commercialized large-scale or infinite content due to constraint conflict and time complexity costs. This paper proposes a Nested WFC (N-WFC) algorithm framework to reduce time complexity. To avoid conflict and backtracking problems, we offer a complete and sub-complete tileset preparation strategy, which requires only a small number of tiles to generate aperiodic and deterministic infinite content. We also introduce the weight-brush system that combines N-WFC and sub-complete tileset, proving its suitability for game design. Our contribution addresses WFC's challenge in massive content generation and provides a theoretical basis for implementing concrete games.Comment: This paper is accepted by IEEE Conference on Games 2023 (nomination of the Best Paper Award

    Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-doped Multilayer Graphene

    Full text link
    Active sites and catalytic mechanism of nitrogen-doped graphene in oxygen reduction reaction (ORR) have been extensively studied but are still inconclusive, partly due to the lack of an experimental method that can detect the active sites. It is proposed in this report that the active sites on nitrogen-doped graphene can be determined via the examination of its chemical composition change before and after ORR. Synchrotron-based X-ray photoelectron spectroscopy analyses of three nitrogen-doped multilayer graphene samples reveal that oxygen reduction intermediate OH(ads) which should chemically attach to the active sites remains on the carbon atoms neighboring pyridinic nitrogen after ORR. In addition, a high amount of the OH(ads) attachment after ORR corresponds to a high catalytic efficiency and vice versa. These pinpoint that the carbon atoms close to pyridinic nitrogen are the main active sites among the different nitrogen doping configurations

    Game-theoretic flexible-final-time differential dynamic programming using Gaussian quadrature

    Get PDF

    Dynamics and nucleation of dislocations in crystals

    Get PDF
    Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a "normal" spiral galaxy (NGC 3191) in terms of stellar mass (several times 10^10 M_sun) and metallicity (roughly Solar). At redshift z=0.031, Gaia17biu is also the lowest redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I while its peak luminosity (M_g = -21 mag) is substantially lower than Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the ~0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with <5.4x10^26 erg/s/Hz (at 10 GHz), which is almost a factor of 40 better than previous upper limits and one of the few measured at an early stage in the evolution of an SLSN-I. This limit largely rules out an association of this SLSNe-I with known populations of gamma-ray burst (GRB) like central engines.Comment: Accepted for publication in ApJ. Ancillary ASCII tables added: TRL.txt -- blackbody temperature, radius and luminosity; uvw2uvm2uvw1uvu.txt -- UV photometry; BgVri.txt -- optical photometry; zJHK.txt -- NIR photometr

    Anthropogenic Plutonium in the North Jiangsu tidal flats of the Yellow Sea in China

    No full text
    The 239+240Pu activities and 240Pu/239Pu atom ratios were analyzed using a double-focusing SF-ICP-MS for sediment core samples obtained in 2007-2008 from the North Jiangsu tidal flats in the Yellow Sea in China. Particular attention was focused on the 240Pu/239Pu atom ratios in the sediment to identify the origins of Pu isotopes. The profiles of 239+240Pu activities in the sediment cores are similar to those of the 137Cs activities. The 240Pu/239Pu atom ratios in the tidal flats showed typical global fallout values, indicating that this area did not receive the possible early direct close-in fallout or oceanic current transported Pu from the Pacific Proving Grounds (PPG). This is different from the sediments in the Yangtze River estuary in the East China Sea, where the PPG source Pu contributed ca. 45% to the total inventory. In addition, the observation of the global fallout origin Pu in the North Jiangsu tidal flats indicated that the nuclear power plant in the region was not causing any alteration/contamination to the 240Pu/239Pu atom ratios. The 239+240Pu and 137Cs activities/inventories in the sediment cores showed correlation to the mean clay sediment compositions (fine-particles) in the tidal flats. Therefore, mud deposits are served as sinks for the anthropogenic radionuclides in the tidal flats and the Yellow Sea. Integrated with the previously reported spatial distributions of 239+240Pu and 137Cs activities in the surface sediments of the Yellow Sea, the mechanism of Pu transport with the ocean currents and the scavenging characteristics in the Yellow Sea were discussed

    135Cs determination in the environment and its application: A review

    No full text
    Under the background of rapid development in nuclear power, strengthen the knowledge of 135Cs analysis and application is extremely necessary. Therefore, based on published literatures and materials, the source term and instrumental analysis of 135Cs were summarized and addressed. Different chemical separation methods and mass spectrometry techniques (ICP-MS, TIMS, RIMS and AMS) for radiocesium determination were compared in this review. In addition, the obtained limit of detection and chemical yield in reported papers were also compared. Finally, we discussed the potential application of 135Cs/137Cs isotopic ratio in the environment with emphasis on Fukushima nuclear accident and prospects in accurate determination, migration behavior and application of 135Cs/137Cs isotopic ratio for future research
    corecore