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I. Introduction

Trajectory optimization is a key enabler to improve the level of autonomy of an aerial vehicle [1–3]. Differential

dynamic programming (DDP) has become a widespread method to solve nonlinear trajectory optimization problems

due to its well-established problem formulation framework and fast convergence characteristics in recent years [4–6].

DDP origins from classical dynamic programming (DP) that leverages the Bellman optimality principle and overcomes

the curse of dimensionality of DP by a second-order approximation of the value function to decompose the original

problem into a succession of subproblems of smaller dimensions [7, 8]. The key feature of DDP is that it provides linear

complexity with respect to the length of time horizon and ensures a theoretical second-order convergence rate [9].

The main issue associated with the original DDP is that it requires accurate dynamics model in solving the

optimization problem. The dynamics model, however, usually suffers from unknown uncertainties and external

disturbances, e.g., unknown wind in fixed-wing aerial vehicle path optimization [10–12], unknown target maneuver in

the missile-target interception problem [13–15]. Using inaccurate dynamics model in the original DDP, the performance

of the resultant solution might degrade drastically and the local optimality is no longer guaranteed [16]. To address this

issue, the authors in [16, 17] utilized differential game theory to develop a min-max DDP or so-called Game-Theoretic

Differential Dynamic Programming (GT-DDP) algorithm. This approach mitigates the effect of model inaccuracy by

formulating the system control input and uncertainty or disturbance as two competitors in a game theory framework.

However, the implementation of GT-DDP requires to predefine a terminal/final time, which is difficult to set an optimal

value beforehand for a free-final-time optimization problem since the final time is naturally a function of the control

input. This drawback, therefore, prohibits the application of GT-DDP for some realistic trajectory optimization problems.

Although we revisited the original DDP by dynamically optimizing the final time in conjunction with the control input

in our previous work [18], the extension to the GT-DDP framework is not straightforward and needs careful adjustment.
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In general, DDP and its variants operate in a discrete-time manner and the commonly-used discretization approach

is the Euler discretization with equally spaced time instants, i.e., the time interval between two time instants is the

same across the entire optimization process. Compared to the Euler discretization approach, it is known that the

Gaussian quadrature rule provides improved algebraic precision with less discretization nodes [19–21]. Typical Gaussian

quadrature rules that are leveraged in solving nonlinear programming problems are the Legendre-Gauss quadrature,

Legendre-Gauss-Labatto quadrature and Legendre-Gauss-Radau (LGR) quadrature [22]. A comprehensive comparison

of these three different methods was reported in [23] and the results indicate that the LGR method provides more

accurate approximations while maintaining a relatively low-dimensional approximation of the problem. This observation

motivates us to leverage the LGR quadrature in DDP for the purpose of further reducing the computational complexity.

This Note revisits the original GT-DDP method and proposes a new GT-FFT-LGRDDP algorithm: Game-Theoretic

Flexible-Final-Time Legendre-Gauss-Radau Differential Dynamic Programming, to solve the typical zero-sum differential

game problem. We first derive the system dynamics with LGR nodes discretization and leverage the Bellman optimality

principle to find the optimal control correction of every iteration. The Taylor expansion of the value function with

respect to the final time is then utilized and the first-order optimality condition is used to obtain the optimal final time

variation in the neighborhood of the current solution at each iteration. Except for removing the heuristic setting of the

final time, another benefit of optimizing the terminal time is that we can dynamically minimize flight time for aerial

vehicles in some time-critical missions. Up to the best of our knowledge, this is the first time to leverage the Gaussian

quadrature in DDP and revisit GT-DDP into a flexible-final-time framework.

An impact-angle-constraint maneuvering target interception guidance problem with energy and flight time mini-

mization [13, 24] is considered as an example to apply the proposed GT-FFT-LGRDDP algorithm. Notice that the

target maneuver is naturally unpredictable since the future movement of a target is generally uncertain, and setting a

final time beforehand is also difficult for this problem. We first formulate this problem as a zero-sum differential game,

where the objective is to minimize the control energy while satisfying the terminal impact angle constraint. In order to

find a feedback guidance command of the interceptor, the proposed GT-FFT-LGRDDP algorithm is leveraged to solve

an optimization problem at every time instant in a receding horizon manner. The comparison results under different

conditions clearly verify that the proposed algorithm provides higher terminal impact precision than other methods.

II. Backgrounds and Preliminaries

In this section, we first introduce the general zero-sum differential game optimization problem and then review the

min-max GT-DDP method for the completeness of the Note.
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A. Zero-Sum Differential Game Problem

For a typical zero-sum differential game problem, there are two noncooperating players with opposite objectives in

the game. The zero-sum differential game problem can be established in a min-max form, where the dynamics of the

game system involving two players can be modeled as

¤x = L (x(�푡), u(�푡), v(�푡)) , x(�푡0) = x0 (1)

where x(�푡) ∈ R�푚G is the state of the dynamic game system, and u(�푡) ∈ R�푚D and v(�푡) ∈ R�푚E denote two opposite

controls within the game system at �푡 ∈ [�푡0, �푡 �푓 ]. �푡 �푓 is the terminal time of the game and x0 stands for the initial state of

the system. The system of the game evolves with a dynamic function L (x(�푡), u(�푡), v(�푡)). The two opposite objectives

of the players can be incorporated in a single objective function of the following form

�퐽 (u, v) = Φ(x(�푡 �푓 ), �푡 �푓 ) +

∫ �푡 5

�푡0

L(x(�푡), u(�푡), v(�푡))d�푡 (2)

where scalars function Φ and L denote the terminal cost and the running cost, respectively.

For a given game problem that u(�푡) minimizes the cost function while v(�푡) maximizes the cost function, the optimal

strategy pair (u∗, v∗) that finds the min-max value of the cost function satisfies

�퐽 (u∗, v) ≤ �퐽 (u∗, v∗) ≤ �퐽 (u, v∗) (3)

B. Min-Max Game-Theoretic DDP

DDP is an approximate DP algorithm that has been well recognized in solving nonlinear optimization problems to

address the issue of curse of dimensionality. The GT-DDP, which is a variant of DDP, is specifically developed to solve

the differential game problem with a min-max form [16]. This subsection reviews the discrete-time GT-DDP algorithm

for the completeness of the Note. To begin with, the dynamics model of the continuous-time game system in Eq. (1) at

�푡 ∈ [�푡0, �푡 �푓 ] is first discretized using simple Euler discretization method as

x�푘+1 = x�푘 + L(x�푘 , u�푘 , v�푘 )�훿�푡, �푡 ∈ {0, 1, · · · , �푁} (4)

where the state and the controls at time instant �푡�푘 are represented as x�푘 , u�푘 and v�푘 , respectively, and �푡�푁 = �푡 �푓 . Notice

that the time interval between two time instants, i.e., �훿�푡 = �푡�푘+1 − �푡�푘 , remains constant across the entire time duration.

The original DDP or GT-DDP requires to set a fixed value of the final time. With this in mind, the terminal

constraint index Φ(x�푁 , �푡�푁 ) depends only on the terminal state, i.e., Φ(x�푁 , �푡�푁 ) = Φ(x�푁 ). The objective function in
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Eq. (2) consequently can be discretized as

�퐽 = Φ(x�푁 ) +

�푁−1∑

�푘=0

L(x�푘 , u�푘 , v�푘 )�훿�푡 (5)

The key idea of GT-DDP is to convert the problem of optimizing the entire control sequence into the problem of

optimizing a single control input u�푘 backward sequentially using the Bellman optimality principle. Accordingly, the

min-max value of the cost function, also called the value function, with two opposite controls can be mathematically

formulated as the following form

�푉 (x�푘 ) = min
[

max
\

{

Φ(x�푁 ) +

�푁−1∑

�푘=0

L(x�푘 , u�푘 , v�푘 )�훿�푡

}

= min
[

max
\

{�퐿 (x�푘 , u�푘 , v�푘 ) +�푉 (x�푘+1)}

(6)

where �퐿 (x�푘 , u�푘 , v�푘 ) = L(x�푘 , u�푘 , v�푘 )�훿�푡, [ = {u0, . . . , u�푘 , . . . , u�푁 } and \ = {v0, . . . , v�푘 , . . . , v�푁 }.

Notice that the system dynamics is generally nonlinear and hence it is usually intractable to find an analytical optimal

control pair u�푘 and v�푘 using Eq. (6) in practice. To address this problem, the GT-DDP utilizes second-order Taylor

expansion around the nominal system state x�푘 to approximate the value function as

�푉 (x�푘 + �훿x�푘 ) ≈ �푉 (x�푘 ) +�푉x (x�푘 )
�푇 �훿x�푘 +

1

2
�훿x�푇�푘�푉xx (x�푘 )�훿x�푘 (7)

where �훿x�푘 denotes the state deviation from the nominal state trajectory at time �푡�푘 .

Define �푄(x�푘 , u�푘 , v�푘 ) = �퐿 (x�푘 , u�푘 , v�푘 ) +�푉 (x�푘+1) as the action-value function. Then, we can also approximate the

action-value function using second-order Taylor series as

�푄(x�푘 + �훿x�푘 , u�푘 + �훿u�푘 , v�푘 + �훿v�푘 ) ≈ �푄(x�푘 , u�푘 , v�푘 ) +�푄�푇
x �훿x�푘 +�푄�푇

u �훿u�푘 +�푄�푇
v �훿v�푘

+
1
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�훿x�푘

�훿u�푘

�훿v�푘



�푇 

�푄xx �푄xu �푄xv

�푄ux �푄uu �푄uv

�푄vx �푄vu �푄vv





�훿x�푘

�훿u�푘

�훿v�푘



(8)

where �훿u�푘 and �훿v�푘 are the control deviations from the nominal trajectory at time �푡�푘 . The gradient vectors and Hessian
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matrices of the state-action value function �푄(x�푘 , u�푘 , v�푘 ) can be readily obtained by the definition as

�푄x = �퐿x + �퐴�푇
�푘 �푉x (x�푘+1), �푄u = �퐿u + �퐵�푇

u:
�푉x (x�푘+1)

�푄v = �퐿v + �퐵�푇
v:
�푉x (x�푘+1), �푄xx = �퐿xx + �퐴�푇

�푘 �푉xx (x�푘+1)�퐴�푘

�푄uu = �퐿uu + �퐵�푇
u:
�푉xx (x�푘+1)�퐵u:

, �푄vv = �퐿vv + �퐵�푇
v:
�푉xx (x�푘+1)�퐵v:

�푄xu = �퐿xu + �퐴�푇
�푘 �푉xx (x�푘+1)�퐵u:

�푄xv = �퐿xv + �퐴�푇
�푘 �푉xx (x�푘+1)�퐵v:

�푄uv = �퐿uv + �퐵�푇
u:
�푉xx (x�푘+1)�퐵v:

, �푄vu = �푄�푇
uv , �푄vx = �푄�푇

xv , �푄ux = �푄�푇
xu

(9)

where the notation (·)x refers to the partial derivative of (·) with respect to x. The matrices �퐴�푘 , �퐵u:
and �퐵v:

are state

Jacobian and control Jacobian evaluated on the nominal trajectory at time �푡�푘 as �퐴�푘 = �퐼 +Lx�훿�푡, �퐵u:
= Lu�훿�푡, �퐵v:

= Lv�훿�푡

with Lx , Lu , Lv being Lx (x�푘 , u�푘 , v�푘 ), Lu (x�푘 , u�푘 , v�푘 ), Lv (x�푘 , u�푘 , v�푘 ), respectively.

Since Eq. (8) is a quadratic function with respect to control perturbations �훿u�푘 and �훿v�푘 , the optimal control correction

�훿u∗
�푘

and �훿v∗
�푘

can be readily derived by using the first-order optimality condition as

�훿u∗
�푘 = −�푄−1

uu

(
�푄u +�푄ux�훿x�푘 +�푄uv�훿v

∗
�푘

)

�훿v∗�푘 = −�푄−1
vv

(
�푄v +�푄vx�훿x�푘 +�푄vu�훿u

∗
�푘

) (10)

Solving Eq. (10) results in the explicit optimal control correction as

�훿u∗
�푘 = �푘u + �퐾u�훿x�푘 , �훿v∗�푘 = �푘v + �퐾v�훿x�푘 (11)

where the feed-forward terms �푘u , �푘v and the feed-back terms �퐾u , �퐾v are defined as

�푘u = −
(
�푄uu −�푄uv�푄

−1
vv�푄vu

)−1 (
�푄u −�푄uv�푄

−1
vv�푄v

)

�푘v = −
(
�푄vv −�푄vu�푄

−1
uu�푄uv

)−1 (
�푄v −�푄vu�푄

−1
uu�푄u

)

�퐾u = −
(
�푄uu −�푄uv�푄

−1
vv�푄vu

)−1 (
�푄ux −�푄uv�푄

−1
vv�푄vx

)

�퐾v = −
(
�푄vv −�푄vu�푄

−1
uu�푄uv

)−1 (
�푄vx −�푄vu�푄

−1
uu�푄ux

)

(12)

Substituting the optimal control correction from Eq. (11) back into Eqs. (7) and (8) and then grouping the

corresponding terms with the same order of �훿x yields

�푉 (x�푘 ) = �푄(x�푘 , u�푘 , v�푘 ) + �푘�푇u�푄u + �푘�푇v �푄v +
1

2
(�푘�푇u�푄uu�푘u + �푘�푇v �푄vv�푘v + �푘�푇u�푄uv�푘v + �푘�푇v �푄vu�푘u)

�푉x (x�푘 ) = �푄x + �퐾�푇
u �푄u + �퐾�푇

v �푄v +�푄xu�푘u +�푄xv�푘v + �퐾�푇
u �푄uu�푘u + �퐾�푇

v �푄vv�푘v + �퐾�푇
u �푄uv�푘v + �퐾�푇

v �푄vu�푘u

�푉xx (x�푘 ) = �푄xx + �퐾�푇
u �푄ux + �퐾�푇

v �푄vx +�푄xu�퐾u +�푄xv�퐾v + �퐾�푇
u �푄uu�퐾u + �퐾�푇

v �푄vv�퐾v + �퐾�푇
u �푄uv�퐾v + �퐾�푇

v �푄vu�퐾u

(13)
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Given initial solution guesses of the control sequence [ and \, GT-DDP initializes the terminal value function

�푉 (x�푁 ) as �푉 (x�푁 ) = Φ(x�푁 ) as well as its derivatives and runs a backward process from �푘 = �푁 to �푘 = 0 to sequentially

find the optimal control correction �훿u�푘 and �훿v�푘 . Hence, the one-step control update is given by

u�푘 = u�푘 + �훿u∗
�푘 = u�푘 + �퐾u�훿x�푘 + �푘u

v�푘 = v�푘 + �훿v∗�푘 = v�푘 + �퐾v�훿x�푘 + �푘v

(14)

Once the backward pass is completed, a forward pass is triggered to find a new nominal state trajectory by substituting

the updated control sequence into system dynamics (4). The GT-DDP algorithm iteratively runs the backward pass

and forward pass until the convergence condition is triggered. A commonly used convergence criterion is that the

difference of the cost function between two consecutive iterations is less than a lower threshold, i.e., |�퐽�푖 − �퐽�푖−1 | ≤ �휖 ,

where �퐽�푖 represents the cost function at the �푖th iteration and �휖 > 0 is a small positive constant. Notice that tuning the

termination threshold factor �휖 is a tradeoff between the optimization performance and computational efficiency: smaller

value ensures accurate convergence performance but a higher computational burden.

C. Motivation

Notice that implementing GT-DDP requires to set a fixed final time, which is generally intractable for some realistic

mission scenarios since the time sequence of the system trajectory is naturally a function of the control input. For

example, in the missile-target interception scenario, the interception time is usually unpredictable since the future

movement of the target is uncertain and hence setting a heuristic value might degrade the optimization performance. We

can also note from the previous descriptions that GT-DDP leverages simple Euler discretization with equally spaced

time intervals. Since the Gaussian quadrature provides improved numerical accuracy with reduced number of discrete

nodes, the objective of this Note is to revisit the GT-DDP using Gaussian quadrature in a flexible-final-time framework.

III. Flexible-Final-Time GT-DDP using Gaussian Quadrature Scheme

In this section, the details of the flexible-final-time GT-DDP using Gaussian quadrature scheme are presented

with rigorous mathematical derivation. A LGR quadrature scheme is leveraged to improve the numerical precision of

GT-DDP and then we use the first-order optimality to revisit GT-DDP in the flexible-final-time framework.

A. Game-Theoretic Legendre-Gauss-Radau DDP

In this subsection, we modify the GT-DDP algorithm by applying the Gaussian quadrature rule. Specifically, the

LGR quadrature nodes and weights are utilized in the time discretization. The resultant algorithm is then termed

as Game-Theoretic Legendre-Gauss-Radau Differential Dynamic Programming (GT-LGRDDP) method. Unlike the

collocation method, there are no collocation points but integral points in the GT-LGRDDP method. Analogous to the

6



Gaussian quadrature rule [23], the time variable �푡 ∈ [�푡0, �푡 �푓 ] is mapped into the scaled time variable �휏 ∈ [−1, 1] as

�푡 =
�푡 �푓 − �푡0

2
�휏 +

�푡 �푓 + �푡0

2
(15)

With the preceding time transformation, a general form of a fucntion integral can be obtained as

∫ �푡 5

�푡0

ℎ(�푡)d�푡 =
�푡 �푓 − �푡0

2

∫ 1

−1

ℎ(�휏)d�휏 (16)

where the integral over �휏 ∈ [−1, 1] can be approximated by the well-established Legendre-Gauss-type quadrature

formula with a sum of �푛 predefined weighted values of ℎ(�휏) as [23]

∫ 1

−1

ℎ(�휏)d�휏 ≈

�푛∑

�푘=0

�푤�푘ℎ(�휏�푘 ) (17)

where �푤�푘 is the Gaussian quadrature weight of node �휏�푘 . Note that �푤�푘 and �휏�푘 depend only on the type of orthogonal

polynomial that has been chosen [23]. Let �퐿�푛 (�휏) denote the �푛-th order Legendre polynomial, the LGR nodes are

defined as the roots of �퐿�푛 (�휏) + �퐿�푛+1 (�휏), where �퐿�푛+1 (�휏) is the (�푛 + 1)-th order Legendre polynomial and the nodes

can be expressed as 3 = [�휏0, �휏1, · · · , �휏�푘 , · · · , �휏�푛−1, �휏�푛] with �휏�푘 < �휏�푘+1. Notice that the location of the LGR nodes are

distributed over �휏 ∈ [−1, 1), i.e., �휏0 = −1 and �휏�푛 < 1. The corresponding weights �푤�푘 are determined by

�푤�푘 =
1

(�푛 + 1)2

1 − �휏�푘

[�퐿�푛 (�휏�푘 )]
2
, �푘 = {0, 1, · · · , �푛} (18)

which is proved to provide the 2�푛 degree algebraic precision.

Using the LGR quadrature rule, the system state at scaled time instant �휏�푘 after transforming the time duration from

�푡 ∈
[
�푡0, �푡 �푓

]
to �휏 ∈ [−1, 1] can then be easily derived as

x(�휏�푘 ) = x(�휏0) +
�푡 �푓 − �푡0

2

�푘−1∑

�푖=0

�푤�푖L(x(�휏�푖), u(�휏�푖), v(�휏�푖)) (19)

which directly leads to the discrete system dynamics using LGR quadrature rule as

x(�휏�푘+1) = x(�휏�푘 ) +
�푡 �푓 − �푡0

2
�푤�푘L(x(�휏�푘 ), u(�휏�푘 ), x(�휏�푘 )) (20)

Since the LGR quadrature rule only changes the time scale of the original system and hence it can be easily verified
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that the Bellman optimality principle still holds as

�푉 (x(�휏�푘 )) = min
u (�휏: )

max
v (�휏: )

{
�푉 (x(�휏�푘+1)) + �̂퐿 (x(�휏�푘 ), u(�휏�푘 ), v(�휏�푘 ))

}
(21)

where

�̂퐿 (x(�휏�푘 ), u(�휏�푘 ), v(�휏�푘 )) =
�푡 �푓 − �푡0

2
�푤�푘L(x(�휏�푘 ), u(�휏�푘 ), v(�휏�푘 )) (22)

which means that we can use similar recursion as GT-DDP to derive the optimal solution. Hence, we define the action-value

function as �̂푄(x(�휏�푘 ), u(�휏�푘 ), v(�휏�푘 )) = �̂퐿 (x(�휏�푘 ), u(�휏�푘 ), v(�휏�푘 )) + �푉 (x(�휏�푘+1)), and approximate �̂푄(x(�휏�푘 ), u(�휏�푘 ), v(�휏�푘 )),

�푉 (x(�휏�푘+1)) using second-order Taylor expansion around the nominal trajectory. Following some simple algebraic

manipulations, the gradient vectors and Hessian matrices of the action-value function in the LGR framework can be

obtained as

�̂푄x = �̂퐿x + �̂퐴�푇
�푘 �푉x (x(�휏�푘+1)), �̂푄u = �̂퐿u + �̂퐵�푇

u:
�푉x (x(�휏�푘+1))

�̂푄v = �̂퐿v + �̂퐵�푇
v:
�푉x (x(�휏�푘+1)), �̂푄xx = �̂퐿xx + �̂퐴�푇

�푘 �푉xx (x(�휏�푘+1)) �̂퐴�푘

�̂푄uu = �̂퐿uu + �̂퐵�푇
u:
�푉xx (x(�휏�푘+1))�̂퐵u:

, �̂푄vv = �̂퐿vv + �̂퐵�푇
v:
�푉xx (x(�휏�푘+1))�̂퐵v:

�̂푄xu = �̂퐿xu + �̂퐴�푇
�푘 �푉xx (x(�휏�푘+1))�̂퐵u:

, �̂푄xv = �̂퐿xv + �̂퐴�푇
�푘 �푉xx (x(�휏�푘+1))�̂퐵v:

�̂푄uv = �̂퐿uv + �̂퐵�푇
u:
�푉xx (x(�휏�푘+1))�̂퐵v:

, �̂푄vu = �̂푄�푇
uv , �̂푄vx = �̂푄�푇

xv , �̂푄ux = �̂푄�푇
xu

(23)

where �̂퐴�푘 , �̂퐵u:
, �̂퐵v:

are Jacobians of state and controls, which are governed by

�̂퐴�푘 = �퐼 +
�푡 �푓 − �푡0

2
�푤�푘Lx (x(�휏�푘 ), u(�휏�푘 ), v(�휏�푘 )), �̂퐵u:

=
�푡 �푓 − �푡0

2
�푤�푘Lu (x(�휏�푘 ), u(�휏�푘 ), v(�휏�푘 ))

�̂퐵v:
=
�푡 �푓 − �푡0

2
�푤�푘Lv (x(�휏�푘 ), u(�휏�푘 ), v(�휏�푘 ))

(24)

By replacing the gradients and Hessian matrices in the original action-value function (9) with their modifications

(23), the optimal control correction at scaled time instant �휏�푘 can be derived as

�훿û∗ (�휏�푘 ) = −�̂푄−1
uu

(
�̂푄u + �̂푄ux�훿x(�휏�푘 ) + �̂푄uv�훿v̂

∗ (�휏�푘 )
)

�훿v̂∗ (�휏�푘 ) = −�̂푄−1
vv

(
�̂푄v + �̂푄vx�훿x(�휏�푘 ) + �̂푄vu�훿û

∗ (�휏�푘 )
) (25)

Solving Eq. (25) results in

�훿û∗ (�휏�푘 ) = �̂푘u + �̂퐾u�훿x(�휏�푘 ), �훿v̂∗ (�휏�푘 ) = �̂푘v + �̂퐾v�훿x(�휏�푘 ) (26)
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where

�̂푘u = −
(
�̂푄uu − �̂푄uv�̂푄

−1
vv�̂푄vu

)−1 (
�̂푄u − �̂푄uv�̂푄

−1
vv�̂푄v

)

�̂푘v = −
(
�̂푄vv − �̂푄vu�̂푄

−1
uu�̂푄uv

)−1 (
�̂푄v − �̂푄vu�̂푄

−1
uu�̂푄u

)

�̂퐾u = −
(
�̂푄uu − �̂푄uv�̂푄

−1
vv�̂푄vu

)−1 (
�푄ux − �̂푄uv�̂푄

−1
vv�̂푄vx

)

�̂퐾v = −
(
�̂푄vv − �̂푄vu�̂푄

−1
uu�̂푄uv

)−1 (
�̂푄vx − �̂푄vu�̂푄

−1
uu�̂푄ux

)

(27)

Replacing the feed-forward and feedback terms of the control update equation in Eq. (14) with their modifications

derived in Eq. (27) gives the optimal control as

u(�휏�푘 ) = u(�휏�푘 ) + �훿u∗ (�휏�푘 ) = u(�휏�푘 ) + �̂퐾u�훿x(�휏�푘 ) + �̂푘u

v(�휏�푘 ) = v(�휏�푘 ) + �훿v∗ (�휏�푘 ) = v(�휏�푘 ) + �̂퐾v�훿x(�휏�푘 ) + �̂푘v

(28)

Similar to GT-DDP, the update of the value function can be easily derived by comparing the second-order Taylor

series of the value function and updated action-value function as

�푉 (x(�휏�푘 )) ≈ �̂푄(x(�휏�푘 ), u(�휏�푘 ), v(�휏�푘 )) + �̂푘�푇u �̂푄u + �̂푘�푇v �̂푄v +
1

2
( �̂푘�푇u �̂푄uu �̂푘u + �̂푘�푇v �̂푄vv �̂푘v + �̂푘�푇u �̂푄uv �̂푘v + �̂푘�푇v �̂푄vu �̂푘u)

�푉x (x(�휏�푘 )) ≈ �̂푄x + �̂퐾�푇
u �̂푄u + �̂퐾�푇

v �̂푄v + �̂푄xu �̂푘u +�푄xv �̂푘v + �̂퐾�푇
u �̂푄uu �̂푘u + �̂퐾�푇

v �̂푄vv �̂푘v + �̂퐾�푇
u �̂푄uv �̂푘v + �̂퐾�푇

v �̂푄vu �̂푘u

�푉xx (x(�휏�푘 )) ≈ �̂푄xx + �̂퐾�푇
u �̂푄ux + �̂퐾�푇

v �̂푄vx + �̂푄xu�̂퐾u + �̂푄xv�̂퐾v + �̂퐾�푇
u �̂푄uu�̂퐾u + �̂퐾�푇

v �̂푄vv�̂퐾v + �̂퐾�푇
u �̂푄uv�̂퐾v + �̂퐾�푇

v �̂푄vu�̂퐾u

(29)

Likewise, with a given initial solution guesses of the opposite control sequence [ and \, GT-LGRDDP initializes

the terminal time value function �푉 (x(�휏�푁 )) as �푉 (x(�휏�푁 )) = Φ(x(�휏�푁 )) as well as its derivatives, and runs the backward

process and the forward pass iteratively until the terminal condition is triggered.

Remark 1 For realistic aerial vehicles, the control input is naturally limited due to the physical constraints. To

maintain the feasibility of the proposed algorithm in the case with two game controls, both of which are constrained

by clamping constraints, the optimization problem in finding the control update should be modeled as a constrained

minimax programming problem, i.e.,

min
�훿u:

max
�훿v:

�푄(x�푘 + �훿x�푘 , u�푘 + �훿u�푘 , v�푘 + �훿v�푘 )

�푠.�푡. u�푚�푖�푛 ≤ u�푘 + �훿u�푘 ≤ u�푚�푎�푥

v�푚�푖�푛 ≤ v�푘 + �훿v�푘 ≤ v�푚�푎�푥

(30)

which needs to be solved by developing appropriate min-max optimization solvers. In order to make the algorithm
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simple to implement and fast to compute, a simple truncation is used in this Note to approximately solve the problem, i.e.,

u(�휏�푘 ) = min(max(u(�휏�푘 ) + �훿u∗ (�휏�푘 ), umin), umax)

v(�휏�푘 ) = min(max(v(�휏�푘 ) + �훿v∗ (�휏�푘 ), vmin), vmax)

(31)

where umin, vmin represent the lower bounds and umax, vmax stand for the upper bounds.

B. GT-LGRDDP with Flexible Final Time

As stated before, it is intractable to set an optimal final time beforehand since the future trajectory of the system might

be unpredictable. For this reason, this section presents a GT-LGRDDP algorithm in a flexible-final-time framework,

termed as GT-FFT-LGRDDP, with rigorous mathematical derivation and introduces how the algorithm dynamically

optimizes the final time in a recursive way. Notice that the final time only influences the value function at the endpoint.

This means that optimizing the control input and final time can be decoupled with each other and hence we can

find the optimal final time increment in the unscaled time framework �푡 ∈
[
�푡0, �푡 �푓

]
. More specifically, the proposed

GT-FFT-LGDDP algorithm updates the control history and the final time by determining their increments with two

subsequent steps. First, with a given final time �푡�푁 , GT-LGRDDP updates the control history following the details shown

in Sec. III.A. Second, the updated final time is computed after updating the control history and the resultant system

trajectory. It is worthy pointing out that another benefit of optimizing the terminal time is that we can dynamically

minimize flight time for aerial vehicles in some time-critical missions, except for removing the heuristic setting of

the final time. This means that the terminal cost Φ(x�푁 , �푡�푁 ) in a flexible-final-time framework can be rewritten as

Φ(x�푁 , �푡�푁 ) = �휙(x�푁 ) + �푘�푁 �푡�푁 , where �휙(x�푁 ) denotes the terminal state constraint and �푘�푁 �푡�푁 with �푘�푁 > 0 is related to the

penalty of the flight time. With this in mind, the objective function in Eq. (2) can be discretized as

�퐽 (u, v) = �휙(x�푁 ) + �푘�푁 �푡�푁 +

�푁−1∑

�푘=0

�̂퐿 (x(�휏�푘 ), u(�휏�푘 ), v(�휏�푘 )) (32)

Considering the relationship between the value function and cost function at terminal time instant, we have

�푉 (x�푁 , �푡�푁 ) = �휙(x�푁 ) + �푘�푁 �푡�푁 . This means that the variation of the terminal value function includes both the variation

of the terminal state x�푁 and the variation of the terminal time �푡�푁 . Similar to the control input update, a second-order

Taylor series is utilized to approximate the terminal value function around nominal trajectory (x�푁 , �푡�푁 ) as

�푉 (x�푁 + �훿x�푁 , �푡�푁 + �훿�푡�푁 ) ≈�푉 (x�푁 , �푡�푁 ) +�푉x#
�훿x�푁 +�푉�푡# �훿�푡�푁 +

1

2
�훿x�푇�푁�푉x# x#

�훿x�푁 +
1

2
�푉�푡# �푡# �훿�푡

2
�푁

+
1

2
�훿x�푇�푁�푉x# �푡# �훿�푡�푁 +

1

2
�훿�푡�푁�푉�푡# x#

�훿x�푁

(33)

Notice that the change of �푡�푁 also poses an effect on the terminal state x�푁 since the final time �푡�푁 is free. Consequently,
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the chain rule of calculus is leveraged to derive the gradients and Hessian of the terminal value function, i.e.,

�푉�푡# =
�휕�푉

�휕�푡�푁
=

�휕�휙

�휕x�푁

�휕x�푁

�휕�푡�푁
+
�휕 (�푘�푁 �푡�푁 )

�휕�푡�푁
= �휙�푇x# L(x�푁 , u�푁 , v�푁 ) + �푘�푁 (34)

�푉x# �푡# = �푉�푇
�푡# x#

=
�휕

�휕x�푁

(
�휕�푉

�휕�푡�푁

)
= �휙x#

x�푁 L(x�푁 , u�푁 , v�푁 ) + L
�푇
x#

�휙x#
(35)

�푉�푡# �푡# =
�휕

�휕�푡�푁

(
�휕�푉

�휕�푡�푁

)
=

�휕

�휕�푡�푁

(
�휕�휙

�휕x�푁

�휕x�푁

�휕�푡�푁
+
�휕 (�푘�푁 �푡�푁 )

�휕�푡�푁

)

=
�휕

�휕x�푁

(
�휕�휙

�휕�푡�푁

)
�휕x�푁

�휕�푡�푁
+

�휕�휙

�휕x�푁

�휕

�휕�푡�푁
L(x�푁 , u�푁 , v�푁 )

(36)

where Lx#
is the gradient of the system dynamics at time instant �푡�푁 .

It should be noted that updating u�푁 and v�푁 are not explicitly given by GT-LGRDDP in the iteration but this

information is useful in the calculation of the increment of the final time. Thus, we assume u�푁 = u�푁−1 and v�푁 = v�푁−1

during the implementation and this directly leads to �휕L(x�푁 , u�푁 , v�푁 )/�휕u�푁 = 0 and �휕L(x�푁 , u�푁 , v�푁 )/�휕v�푁 = 0. Hence,

we can readily derive

�휕

�휕�푡�푁
L(x�푁 , u�푁 , v�푁 ) =

�휕

�휕x�푁
L(x�푁 , u�푁 , v�푁 )

�휕x�푁

�휕�푡�푁
(37)

Substituting Eq. (37) into Eq. (36) gives

�푉�푡# �푡# =
�휕

�휕x�푁

(
�휕�휙

�휕x�푁

�휕x�푁

�휕�푡�푁

)
�휕x�푁

�휕�푡�푁
+

�휕�휙

�휕x�푁

�휕

�휕x�푁
L(x�푁 , u�푁 , v�푁 )

�휕x�푁

�휕�푡�푁

=

[
�휕

�휕x�푁

(
�휕�휙

�휕x�푁

)
�휕x�푁

�휕�푡�푁
+

�휕�휙

�휕x�푁

�휕

�휕x�푁

(
�휕x�푁

�휕�푡�푁

)]�푇
�휕x�푁

�휕�푡�푁
+

�휕�휙

�휕x�푁

�휕

�휕x�푁
L(x�푁 , u�푁 , v�푁 )

�휕x�푁

�휕�푡�푁

=
[
�휙x# x#

L(x�푁 , u�푁 , v�푁 ) + �휙x#
Lx#

+ �휙x#
Lx#

]�푇
L(x�푁 , u�푁 , v�푁 )

(38)

By the definition of the value function, we have

�푉 (x�푁 , �푡�푁 ) = Φ(x�푁 , �푡�푁 ) = �휙(x�푁 ) + �푘�푁 �푡�푁

�푉x#
(x�푁 , �푡�푁 ) = Φx#

(x�푁 , �푡�푁 ) = �휙x#
(x�푁 )

�푉x# x#
(x�푁 , �푡�푁 ) = Φx# x#

(x�푁 , �푡�푁 ) = �휙x# x#
(x�푁 )

(39)

Notice that the value function at terminal time, expressed in Eq. (33), is a quadratic function with respect to terminal

state variation �훿x�푁 and terminal time variation �훿�푡�푁 . To this end, the optimal terminal time correction �훿�푡∗
�푁

can be derived

by using the first-order optimality condition of Eq. (33) as

�훿�푡∗�푁 = −�푉−1
�푡# �푡#

(
�푉�푡# +�푉�푡# x#

�훿x�푁
)

(40)
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which indicates that the optimal final time correction �훿�푡∗
�푁

is composed of a feed-forward term −�푉−1
�푡# �푡#

�푉�푡# and a state

feedback term −�푉−1
�푡# �푡#

�푉�푡# x#
�훿x�푁 . Notice that �푉�푡# , �푉�푡# x#

and �푉�푡# �푡# are determined by using Eqs. (34), (35) and (38).

Substituting Eq. (40) back into Eq. (33), the update of the terminal value function can be then expressed as

�푉 (x�푁 + �훿x�푁 , �푡�푁 + �훿�푡�푁 ) ≈�푉 (x�푁 , �푡�푁 ) −
1

2
�푉�푡#�푉

−1
�푡# �푡#

�푉�푡# +
[
�푉x#

−�푉�푇
�푡# x#

�푉−1
�푡# �푡#

�푉�푡#

]�푇
�훿x�푁

+
1

2
�훿x�푇�푁

[
�푉x# x#

−�푉�푇
�푡# x#

�푉−1
�푡# �푡#

�푉�푡# x#

]
�훿x�푁

(41)

which subsequently gives the derivatives of the value function at time instant �푡�푁 as

�푉x (x�푁 ) = �푉�푇
x#

−�푉�푇
�푡# x#

�푉−1
�푡# �푡#

�푉�푡#

�푉xx (x�푁 ) = �푉x# x#
−�푉�푇

�푡# x#
�푉−1
�푡# �푡#

�푉�푡# x#

(42)

Then, substituting Eq. (42) into Eq. (23) gives the gradients and Hessian matrices of the action-value function at the

(�푁 − 1)-th discretization points as

�̂푄x,�푁−1 =�̂퐿x,�푁−1 + �̂퐴�푇
�푁−1�̂푉x (x(�휏�푁 )), �̂푄u,�푁−1 = �̂퐿u,�푁−1 + �̂퐵�푇

u#−1
�̂푉x (x(�휏�푁 ))

�̂푄v,�푁−1 =�̂퐿v,�푁−1 + �̂퐵�푇
v#−1

�̂푉x (x(�휏�푁 )), �̂푄xx,�푁−1 = �̂퐿xx,�푁−1 + �̂퐴�푇
�푁−1�̂푉xx (x(�휏�푁 )) �̂퐴�푁−1

�̂푄uu,�푁−1 =�̂퐿uu,�푁−1 + �̂퐵�푇
u#−1

�̂푉xx (x(�휏�푁 ))�̂퐵u#−1
, �̂푄vv,�푁−1 = �̂퐿vv,�푁−1 + �̂퐵�푇

v#−1
�̂푉xx (x(�휏�푁 ))�̂퐵v#−1

�̂푄xu,�푁−1 =�̂퐿xu,�푁−1 + �̂퐴�푇
�푁−1�̂푉xx (x(�휏�푁 ))�̂퐵u#−1

, �̂푄xv,�푁−1 = �̂퐿xv,�푁−1 + �̂퐴�푇
�푁−1�̂푉xx (x(�휏�푁 ))�̂퐵v#−1

�̂푄uv,�푁−1 = �̂퐿uv,�푁−1 + �̂퐵�푇
u#−1

�̂푉xx (x(�휏�푁 ))�̂퐵v#−1
, �̂푄vu,�푁−1 = �̂푄�푇

uv,�푁−1, �̂푄vx,�푁−1 = �̂푄�푇
xv,�푁−1, �̂푄ux,�푁−1 = �̂푄�푇

xu,�푁−1

(43)

where the terms with subscripts �푁 − 1 and �푁 denote the values of the corresponding terms evaluated at the (�푁 − 1)-th

and �푁-th discretization points, respectively.

Since the update of the final time only affects the action-value function at the (�푁 − 1)-th discretization point, the

gradients and Hessian matrices of the action-value function at other discretization points are the same as Eq. (23).

Remark 2 It is known that a poor initial solution guess may result in the divergence of a numerical solver and failure

of convergence to a local optimum. Therefore, the update of the final time is restricted to a bounded region as

�푡�푁 = min(max(�푡�푁 + �훿�푡∗�푁 , �푡min), �푡max) (44)

where �푡min and �푡max represent the lower and the upper bounds of the final time, respectively.

Remark 3 Note that the proposed algorithm revisits the GT-DDP using the following two-step to update the control
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history and the final time: (1) Given a �푡�푁 , we can run the classical GT-DDP to find the updated control history; and (2)

Using the updated control history, we compute the update of the final time. As a result, the preceding iterative process

does not need to add the weighted final time to the terminal cost to cater for the flexible-final-time framework. Hence,

the proposed algorithm is capable of solving a general free-final-time optimization problem without adding a weighted

final time to the terminal cost, i.e., �푘�푁 = 0.

C. Summary of the Proposed Algorithm

By summarizing the results of the previous two subsections, we summarize the pseudocode of the proposed

GT-FFT-LGRDDP in Algorithm 1, which clearly reveals that the optimal control correction is first found before the

final time is optimized. Notice that the final time �푡�푁 is varying during the iteration and hence we re-scale the time

duration using the LGR nodes at every iteration with a fixed number of discretization points. This helps to maintain the

efficiency of the proposed GT-FFT-LGRDDP algorithm.

Algorithm 1 Game-Theoretic Flexible-Final-Time Legendre-Gauss-Radau Differential Dynamic Programming

1: Initial state x0, initialized control sequence [ and \, initialized terminal time �푡�푁 , number of discretization points �푁 ,

termination condition threshold �휖

2: Generate �푛 = �푁 − 1 LGR nodes

3: Scale the time horizon using Eq. (15)

4: for �푘 = 0, ..., �푁 − 1 do

5: x(�휏�푘+1) = x(�휏�푘 ) +
�푡 5 −�푡0

2
�푤�푘L(x(�휏�푘 ), u(�휏�푘 ), x(�휏�푘 ))

6: end for

7: Initialize the cost function �퐽0

8: while |�퐽�푖 − �퐽�푖−1 | ≥ �휖 do

9: �푉�푁 = �휙(x�푁 ) + �푡�푁 , �푉x#
= �휙x#

(x�푁 ), �푉x# x#
= �휙x# x#

(x�푁 )

10: �푉�푡# ← Eq. (34), �푉�푡# x#
← Eq. (35), �푉�푡# �푡# ← Eq. (38)

11: for �푘 = �푁 − 1, ..., 0 do

12: if �푘 = �푁 − 1 then

13: �푉x (x�푁 ), �푉xx (x�푁 ) ← Eq. (42)

14: Calculate the gradients and Hessian matrices of �̂푄 (x�푁−1, u�푁−1) using Eq. (43)

15: else

16: Calculate the gradients and Hessian matrices of �̂푄 (x�푘 , u�푘 ) using Eq. (23)

17: end if

18: u�푘 ,v�푘 ← Eq. (28)

19: u�푘 = min(max(u�푘 + �훿u�푘 , umin), umax)

20: v�푘 = min(max(v�푘 + �훿v�푘 , vmin), vmax)

21: Update of the modified value function and its derivatives using Eq. (13)

22: end for

23: for �푘 = 0, ..., �푁 − 1 do

24: x(�휏�푘+1) = x(�휏�푘 ) +
�푡 5 −�푡0

2
�푤�푘L(x(�휏�푘 ), u(�휏�푘 ), x(�휏�푘 ))

25: end for

26: �훿�푡∗
�푁
← Eq. (40)

27: �푡�푁 = min(max(�푡�푁 + �훿�푡∗
�푁
, �푡min), �푡max)

28: Scale the time horizon using Eq. (15)

29: end while
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Fig. 1 Planar Engagement geometry.

IV. Application Example: Impact-Angle-Constrained Pursuer-Evader Differential Game

In this section, we consider a pursuer-evader game between an interceptor I and a target T as an example to apply

the proposed algorithm. We first introduce the dynamic model of the missile-target system and formulate a receding

horizon differential game problem with multiple terminal constraints. The proposed GT-FFT-LGRDDP algorithm is

then leveraged to solve the optimization problem formulated.

A. Kinematics and Dynamics Models

The engagement geometry in the vertical plane of two players for the game is shown in Fig. 1, where �푋 −�푂 −�푌 is a

Cartesian inertial reference frame. The symbols �푉�퐼 and �푉�푇 represent the velocity of I and T. The flight-path angles of

these two vehicles are denoted by �훾�퐼 and �훾�푇 . The notations �푎�퐼 and �푎�푇 are the lateral lift accelerations perpendicular to

the velocity vectors. The relative distance between I and T is �푟 and the line-of-sight (LOS) angle is represented by �휆. To

verify the effectiveness of the proposed algorithm for real interception scenarios, realistic interceptor and target models

with thrust, drag and gravity are considered. Thus, the differential equations that govern this he vehicle kinematics are

given by

¤�푥�푖 = �푉�푖 cos �훾�푖

¤�푦�푖 = �푉�푖 sin �훾�푖

¤�푉�푖 =
�푇�푖 − �퐷�푖

�푚�푖

− �푔 sin �훾�푖

¤�훾�푖 =
�푎�푖 − �푔 cos �훾�푖

�푉�푖
, �푖 = �퐼, �푇

(45)

where �푔 is the expression of gravitational acceleration, �푇�푖 is the engine thrust and �푚�푖 denotes the mass of the vehicle.

The aerodynamic drag of the vehicles, denoted by �퐷�푖 , is modeled as

�퐷�푖 = �퐶�퐷8
�푞�푖�푆�푖 +

�퐾2
�푖 �푎

2
�푖�푚

2
�푖

�푞�푖�푆�푖
, �푖 = �퐼, �푇 (46)
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where �퐶�퐷8
represents the zero-lift drag coefficient and �퐾�푖 is the induced drag coefficient. The symbol �푆�푖 is the reference

area, and �푞�푖 = 0.5�휌�푉2
�푖 is the aerodynamic pressure with �휌 being the atmosphere density.

B. Optimization Problem Formulation

To ensure that the missile can precisely intercept the target with desired impact angle, it is desirable to impose

constraints on minimizing terminal miss distance along with the terminal impact angle error. The terminal distance

between the interceptor and the target �푟 (�푡 �푓 ), known as terminal miss distance, is determined by the Euclidean distance as

�푟2 (�푡 �푓 ) =
[
�푥�푇 (�푡 �푓 ) − �푥�퐼 (�푡 �푓 )

]2
+
[
�푦�푇 (�푡 �푓 ) − �푦�퐼 (�푡 �푓 )

]2
, where �푥�퐼 (�푡 �푓 ), �푦�퐼 (�푡 �푓 ) and �푥�푇 (�푡 �푓 ), �푦�푇 (�푡 �푓 ) represent the terminal

inertial positions of the interceptor and the target, respectively. The impact angle is defined as the angle between the

velocity vectors between the interceptor and the target. From Fig. 1, the impact angle can be mathematically expressed

as �휂 = �훾�퐼 + �훾�푇 . Let the desired impact angle be �휂�푑 and the impact angle error is then given by �푒�휂 = �훾�퐼 + �훾�푇 − �휂�푑 . For

real interception scenarios, the missile is desirable to intercept the target in a short time and hence we also penalize the

flight time in the terminal constraint. With the preceding considerations, the terminal constraint function Φ(x(�푡 �푓 ), �푡 �푓 )

for our guidance problem is defined as

Φ(x(�푡 �푓 ), �푡 �푓 ) =
1

2
�휔�푁A

�푟2 (�푡 �푓 ) +
1

2
�휔�푁[

�푒2
�휂 (�푡 �푓 ) + �푘�푁 �푡 �푓 (47)

where �휔�푁A
> 0, �휔�푁[

> 0 and �푘�푁 > 0 are the weighting factors that enforce the soft terminal constraints on the terminal

miss distance, terminal impact angle error and flight time, respectively. Notice that these weighting factors should

be tuned to consider the scale difference across all state variables. Define x = [�푥�퐼 , �푦�퐼 , �푥�푇 , �푦�푇 , �푉�퐼 , �푉�푇 , �훾�퐼 , �훾�푇 ]
�푇 as the

system state vector and the desired terminal state x�푑 = [0, 0, 0, 0, 0, 0, �휂�푑/2, �휂�푑/2]
�푇 , Eq. (47) can be rewritten in a more

compact form as

Φ(x(�푡 �푓 ), �푡 �푓 ) =
1

2

[
x(�푡 �푓 ) − x�푑

]�푇
W�푁

[
x(�푡 �푓 ) − x�푑

]
+ �푘�푁 �푡 �푓 (48)

where W�푁 is a fixed weighting matrix and can be easily obtained from Eq. (47).

Since minimizing the quadratic energy consumption term is helpful to reduce the induced drag and is a worthy goal

in endo-atmospheric trajectory optimization, we consider energy consumption of both the interceptor and the target to

formulate the running cost L(x(�푡), �푎�퐼 (�푡), �푎�푇 (�푡)) as

L(x(�푡), �푎�퐼 (�푡), �푎�푇 (�푡)) =
1

2

[
�푅�퐼

�푡go

�푎2
�퐼 (�푡) − �훾2�푅�푇 �푎

2
�푇 (�푡)

]
(49)

where two players are competing with each other in the running cost with positives �푅�퐼 /�푡go > 0 and �푅�푇 > 0 energy

consumption weighting factors. The symbol �푡�푔�표 = �푡 �푓 − �푡 denotes the remaining flight time, which penalizes more

control energy at the initial period of the homing phase and gradually reduce the penalty when approaching the target.
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This helps to improve the operational margins of the interceptor and hence can improve the impact performance in terms

of the terminal interception errors. Notice that The positive constant �훾 > 0 measures the interceptor’s maneuverability

relative to the target and setting a big value is helpful to locally attenuate the effect of unknown target maneuver �푎�푇 [13].

Combing Eqs. (48) and (49), the objective function can be explicitly presented as

�퐽 (�푎�퐼 , �푎�푇 ) =
1

2

[
x(�푡 �푓 ) − x�푑

]�푇
W�푁

[
x(�푡 �푓 ) − x�푑

]
+ �푘�푁 �푡 �푓 +

∫ �푡 5

�푡0

1

2

[
�푅�퐼

�푡go

�푎2
�퐼 (�푡) − �훾2�푅�푇 �푎

2
�푇 (�푡)

]
d�푡 (50)

Then, the differential game optimization problem can be formulated as: find an optimal guidance command profile

�푎∗
�퐼
(�푡) that minimizes objective function (50) subject to system dynamics (45) with a given initial condition x0.

C. Closed-Loop Guidance Command Generation

Notice that minimizing objective function (50) generates an open-loop command and hence is sensitive to external

disturbances, e.g., the missile will miss the target once the target performs a sudden maneuver. To enable the generation

of a closed-loop guidance command, we reformulate the optimization problem in a receding horizon manner, i.e.,

solving a differential game optimization problem at every time instant. To this end, we revise objective function (50) as

�퐽�푘 =
1

2

[
x(�푡 �푓 ) − x�푑

]�푇
W�푁

[
x(�푡 �푓 ) − x�푑

]
+ �푘�푁 �푡 �푓 +

∫ �푡 5

�푡:

1

2

[
�푅�퐼

�푡go

�푎2
�퐼 (�푡) − �훾2�푅�푇 �푎

2
�푇 (�푡)

]
d�푡 (51)

The optimal guidance command can be obtained by sequentially minimizing objective function (51) from the initial

time �푡0 to the final time �푡 �푓 : at time instant �푡�푘 , we apply the proposed GT-FFT-LGRDDP algorithm to find an optimal

control sequence {�푎�퐼
∗
�푘
, �푎�퐼

∗
�푘+1

, · · · , �푎�퐼
∗
�푁+�푘

}, which contains �푁 elements corresponding to �푁 nodes that required by the

algorithm. The first element of [∗
�푘
, i.e., �푎�퐼

∗
�푘
, is applied to the missile as the guidance command at time instant �푡�푘 . This

means that the guidance command is solved in a receding horizon optimization manner with shrinking time horizon.

V. Numerical Simulations

The performance of the proposed algorithm derived in Sec. III is evaluated in the following subsection through

numerical simulations. The initial conditions of the considered scenario and vehicles aerodynamics are summarized in

Table 1. The atmospheric density model is �휌(�푦) = 1.15579−1.058×10−4�푦+3.725×10−9�푦2−6.0×10−14�푦3 kg/m3, �푦 ∈

[0 m, 20 000 m]. The constant penalty weightings in cost function (51) are chosen as �푘�푁 = 1, �푅�퐼 = 1, �푅�푇 = 1, �훾 = 18.

We use �푁 = 39 LGR nodes to discretize the dynamic system and an unguided trajectory, i.e., with zero guidance

command, and �푡�푁 = 4.2�푠 to initialize GT-FFT-LGRDDP algorithm in all simulations. Considering the initial condition

of the scenario, the terminal time is bounded by �푡�푁 ∈ [0.01�푠, 8�푠]. The termination threshold is tuned as �휖 = 10−6

for each simulation run. Notice that the interceptor with additional impact angle constraint requires bigger lateral

acceleration than the homing-only guidance. Hence, we limit the acceleration as |�푎�퐼 | ≤ 400�푚/�푠2, which shares similar
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level of maneuver demand as [13, 25, 26]. Since the aerodynamics of a hostile target is not available to the interceptor,

we assume that the target is moving only with the influence by the lift acceleration and the gravity in running the

optimization algorithm while the full motion model is considered in determining the trajectory of the target.

Table 1 Initial conditions and aerodynamics.

Parameters of Interceptor Value Parameters of Target Value

Initial position (�푥�퐼 , �푦�퐼 ) (0�푚, 1000�푚) Initial position (�푥�푇 , �푦�푇 ) (5000�푚, 1000�푚)

Initial flight path angle �훾�퐼 10◦ Initial flight path angle �훾�푇 0◦

Initial speed �푉�퐼 600�푚/�푠 Initial speed �푉�푇 400�푚/�푠

Zero-lift drag coefficient �퐶�퐷�
0.035 Zero-lift drag coefficient �퐶�퐷)

0.35

Induced drag coefficient �퐾�퐷�
0.32 Induced drag coefficient �퐾�퐷)

0.04

Reference area �푆�퐼 1�푚2 Reference area �푆�푇 27.87�푚2

Thrust �푇�퐼 (�푘�푁)

{
35, �푡 ∈ [0, 1.5�푠]

0, �푡 > 1.5�푠
Thrust �푇�푇 131.22�푘�푁

Mass �푚�퐼 (�푘�푔)

{
135 − 30�푡, �푡 ∈ [0, 1.5�푠]

90, �푡 > 1.5�푠
Mass �푚�푇 9207�푘�푔

A. Characteristics of Proposed Algorithm

We first consider a gravity-compensated step maneuver target with �푎�푇 = −10�푚/�푠2 + �푔 cos �훾�푇 to analyze the

characteristics of the proposed GT-FFT-LGRDDP algorithm. The interceptor is supposed to intercept the target with

various impact angles �휂�푑 = −20◦,−10◦, 0◦, 10◦, 20◦, which includes typical engagement scenarios like head-on and

side attack. The tuning parameters �휔�푁A
is set as 400 for five cases and �휔�푁[

is 8 × 107 for all in this simulation. The

simulation results, including the engagement trajectory, time history of impact angle, velocity of the interceptor and

the target, and guidance command of the interceptor, are presented in Fig. 2. The results indicate that the proposed

GT-FFT-LGRDDP algorithm with a receding horizon mechanism provides the capability to find the optimal guidance

command that enables accurate target interception with desired impact angle constraint. The recorded miss distance and

impact angle error in the simulations are less than 3�푚 and 0.1◦, respectively. We can also observe that the interceptor

in the side attack scenario generates more curved flight trajectory than the head-on case, thus requiring bigger lateral

acceleration. From Fig. 2(e), we can find the curve of the guidance command of the interceptor exhibits jagged changes.

This can be attributed to the fact that the optimization horizon is shrinking while the number of discrete nodes is fixed.

To eliminate or mitigate the jagged oscillation, we can increase the number of discrete nodes. This, however, will

increase the computational burden.

B. Comparison with FFT-LGRDDP and GT-FFT-DDP

In this subsection, we compare the proposed algorithm with Flexible-Final-Time Legendre-Gauss-Radau DDP

(FFT-LGRDDP) algorithm and Game-Theoretic Flexible-Final-Time DDP (GT-FFT-DDP) algorithm to demonstrate the
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(a) Interception trajectory (b) Time history of impact angle

(c) Interceptor velocity variation (d) Target velocity variation (e) Guidance command of interceptor

Fig. 2 Engagement simulation of the proposed algorithm with step maneuver target.

advantages of the proposed algorithm. The FFT-LGRDDP algorithm replaces the Euler discretization in the FFT-DDP

[18] and the GT-FFT-DDP algorithm modifies the original GT-DDP [16] by additionally optimizing the final time. All

test algorithms are running in a shrinking receding horizon manner to generate a closed-loop guidance command and

the tuning parameters �휔�푁A
and �휔�푁[

are set as 225 and 8 × 107 in all simulations for fair comparison.

We first compare the performance of the proposed algorithm with FFT-LGRDDP with different target maneuvers

�푎�푇 = 1�푔+�푔 cos �훾�푇 , 2�푔+�푔 cos �훾�푇 , 3�푔+�푔 cos �훾�푇 , 4�푔+�푔 cos �훾�푇 . Since the future target maneuver is generally uncertain to

the interceptor, we implement the FFT-LGRDDP with �푎�푇 = �푔 cos �훾�푇 . The comparison results, including the engagement

trajectory, time history of impact angle, and guidance command of the interceptor, with different target maneuvers under

two methods, are presented in Fig. 3. The results indicate that the proposed algorithm can guide the missile to intercept

the target with desired terminal conditions, while the FFT-LGRDDP algorithm becomes unstable. Therefore, it can be

concluded that for unknown target maneuvers up to 4�푔, the proposed algorithm is able to provide satisfactory results,

while FFT-LGRDDP fails. This indicates that the proposed algorithm provides improved performance in dealing with

the uncertain maneuver target.

Now, let us evaluate the advantage of leveraging LGR discretization in DDP by comparing with GT-FFT-DDP,

which utilizes the Euler discretization scheme. The target is supposed to execute a step maneuver with the magnitude of

1�푔. To better understand the sensitivity of the algorithm to �푁 , we perform comparative simulations with several different
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(a) Interception trajectory (b) Time history of impact angle (c) Guidance command of interceptor

Fig. 3 Comparison simulation results against step maneuver target.

numbers of nodes �푁 = 19, 29, 39, 49, 59, 69 and the detailed comparison results of terminal errors are summarized

in Table 2. It follows from the results that the GT-FFT-DDP with �푁 = 19 shows a divergence at early stage of the

homing phase, as confirmed by Fig. 4. The results indicate that the performance of the proposed algorithm is robust

against the variation of the number of nodes, while the GT-FFT-DDP algorithm is sensitive to this parameter. From

Table 2, we can note that increasing the number of discretization nodes is helpful to improve the numerical accuracy for

both algorithms. However, compared to GT-FFT-DDP, the proposed algorithm shows an improvement of around 6.5%

in terms of terminal miss distance and 8.5% in terms of terminal impact angle error. Intuitively, the error between

the two algorithms decreases as the number of discrete nodes increases. Notably, although increasing the number of

discretization nodes can improve the numerical accuracy of the GT-FFT-DDP algorithm, this approach with �푁 = 19 still

becomes unstable at the early stage of the simulation, as shown in Fig. 4(c). Therefore, the proposed algorithm shows

higher numerical stability and higher terminal accuracy than the GT-FFT-DDP algorithm.

(a) Interception trajectory (b) Time history of impact angle (c) Guidance command of interceptor

Fig. 4 Comparison simulation results against step maneuver target.
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Table 2 Terminal conditions for GT-FFT-LGRDDP and GT-FFT-DDP.

Terminal Condition Method 19 29 39 49 59 69

Terminal Miss Distance
GT-FFT-LGRDDP 2.229�푚 2.096�푚 2.006�푚 1.956�푚 1.925�푚 1.902�푚

GT-FFT-DDP � 2.239�푚 2.107�푚 2.033�푚 1.988�푚 1.956�푚

Improvement � 6.39% 4.79% 3.79% 3.17% 2.76%

Terminal Impact Angle Error
GT-FFT-LGRDDP 0.0949◦ 0.0892◦ 0.0867◦ 0.0854◦ 0.0521◦ 0.0515◦

GT-FFT-DDP � 0.0973◦ 0.0925◦ 0.0899◦ 0.0557◦ 0.0546◦

Improvement � 8.32% 6.27% 5.01% 6.46% 5.68%

VI. Conclusions

This Note proposes a new GT-FFT-LGRDDP algorithm to solve the nonlinear differential game problem. The

proposed algorithm revisits the GT-DDP by adopting a LGR quadrature scheme and dynamically adjusting the final time.

The key features of the algorithm developed are twofolds: the computational complexity is reduced with guaranteed

numerical accuracy, and the terminal time is optimized instead heuristically set beforehand. A two-dimensional

impact-angle-constrained missile guidance problem with a realistic interceptor model is considered to verify the

effectiveness of the proposed method. The simulation results reveal that the proposed algorithm is robust against to the

unpredictable target maneuver and the variation of the number of discretization nodes.

From the simulation results, it can be concluded that dynamically adjusting the final time in GT-DDP is helpful

to cope with the unknown target maneuvers than pre-setting the flight time. In addition, the results also reveal that

the Gaussian quadrature provides the capability of improving the numerical accuracy of the algorithm compared to

conventional Euler discretization scheme. Therefore, the Gaussian integration method can be used in similar scenarios

where the numerical accuracy of the algorithm needs to be improved. Future work includes theoretical convergence

analysis and computational burden alleviation.
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