68,433 research outputs found
Motion coordination and programmable teleoperation between two industrial robots
Tasks for two coordinated industrial robots always bring the robots in contact with a same object. The motion coordination among the robots and the object must be maintained all the time. To plan the coordinated tasks, only one robot's motion is planned according to the required motion of the object. The motion of the second robot is to follow the first one as specified by a set of holonomic equality constraints at every time instant. If any modification of the object's motion is needed in real-time, only the first robot's motion has to be modified accordingly in real-time. The modification for the second robot is done implicitly through the constraint conditions. Thus the operation is simplified. If the object is physically removed, the second robot still continually follows the first one through the constraint conditions. If the first robot is maneuvered through either the teach pendant or the keyboard, the second one moves accordingly to form the teleoperation which is linked through the software programming. Obviously, the second robot does not need to duplicate the first robot's motion. The programming of the constraints specifies their relative motions
Spin relaxation and decoherence of two-level systems
We revisit the concepts of spin relaxation and spin decoherence of two level
(spin-1/2) systems. From two toy-models, we clarify two issues related to the
spin relaxation and decoherence: 1) For an ensemble of two-level particles each
subjected to a different environmental field, there exists an ensemble
relaxation time which is fundamentally different from . When the
off-diagonal coupling of each particle is in a single mode with the same
frequency but a random coupling strength, we show that is finite while
the spin relaxation time of a single spin and the usual ensemble
decoherence time are infinite. 2) For a two-level particle under only a
random diagonal coupling, its relaxation time shall be infinite but its
decoherence time is finite.Comment: 5 pages, 2 figure
Achieving control of in-plane elastic waves
We derive the elastic properties of a cylindrical cloak for in-plane coupled
shear and pressure waves. The cloak is characterized by a rank 4 elasticity
tensor with 16 spatially varying entries which are deduced from a geometric
transform. Remarkably, the Navier equations retain their form under this
transform, which is generally untrue [Milton et al., New J. Phys. 8, 248
(2006)]. We numerically check that clamped and freely vibrating obstacles
located inside the neutral region are cloaked disrespectful of the frequency
and the polarization of an incoming elastic wave.Comment: 9 pages, 4 figure
Dynamics of two atoms coupled to a cavity field
We investigate the interaction of two two-level atoms with a single mode
cavity field. One of the atoms is exactly at resonance with the field, while
the other is well far from resonance and hence is treated in the dispersive
limit. We find that the presence of the non-resonant atom produces a shift in
the Rabi frequency of the resonant atom, as if it was detuned from the field.
We focus on the discussion of the evolution of the state purity of each atom.Comment: LaTex, 2 figure
^{115}In-NQR evidence for unconventional superconductivity in CeIn_3 under pressure
We report evidence for unconventional superconductivity in CeIn_3 at a
pressure P = 2.65 GPa above critical pressure (P_c ~ 2.5 GPa) revealed by the
measurements of nuclear-spin-lattice-relaxation time (T_1) and
ac-susceptibility (ac-chi). Both the measurements of T_1 and ac-chi have
pointed to a superconducting transition at T_c = 95 mK, which is much lower
than an onset temperature T_{onset} = 0.15 K at zero resistance. The
temperature dependence of 1/T_1 shows no coherence peak just below T_c,
indicative of an unconventional nature for the superconductivity induced in
CeIn_3.Comment: 4 pages, 4 figures, to be published in Phys.Rev.
- …