194 research outputs found

    Intervention-point principle of meshless method

    Get PDF

    Three-dimensional simulation of aggregate and asphalt mixture using parameterized shape and size gradation

    Get PDF
    Aggregate occupies at least three-quarters of the volume of asphalt mixture and can significantly affect the performance of pavement. The geometrical morphology influences the slippage and interlock among aggregates for resisting and distributing applied loads. In recent years, the discrete-element method (DEM) has been employed for simulation of asphalt mixture structure. This paper introduces an approach for simulation of aggregate and asphalt mixtures using parameterized shape and size gradation. Both the plane geometry factor (PGF) and the section aspect ratio (SAR) were employed to describe the three-dimensional (3D) geometric characteristics of aggregates. A numerical technique of aggregate models was implemented with probabilistic parameters depending on statistical results of PGFs and SARs. The 3D numerical model of asphalt mixtures was assembled with three different components, and was validated by uniaxial compression tests via comparison with the laboratory result. It was found that the PGF and SAR are appropriate to describe the three-dimensional features of aggregate shapes, because a simplified space object can be described by a two-dimensional (2D) graphical projection and a vector scalar corresponding to the space vector. Probability distribution curves of PGFs and SARs between coarse aggregates were in concordance with the Gauss-type function, because their correlation coefficients were all greater than 95%. It was verified that the developed clumping algorithm of aggregates was reasonable in terms of the shape and size gradation. Based on the parallel-bond model and Burger's model, the results of virtual tests were in good agreement with those of laboratory uniaxial tests. The angularity (PGF) of aggregates has a beneficial effect on the strength and stability of asphalt mixtures, whereas the flat-elongated feature (SAR) has a negative effect on the strength and stability of asphalt mixtures

    Research on differences and correlation between tensile, compression and flexural moduli of cement stabilized macadam

    Get PDF
    In order to reveal the differences and conversion relations between the tensile, compressive and flexural moduli of cement stabilized macadam, in this paper, we develop a new test method for measuring three moduli simultaneously. By using the materials testing system, we test three moduli of the cement stabilized macadam under different loading rates, propose a flexural modulus calculation formula which considers the shearing effect, reveal the change rules of the tensile, compression and flexural moduli with the loading rate and establish the conversion relationships between the three moduli. The results indicate that: three moduli become larger with the increase of the loading rate, showing a power function pattern; with the shear effect considered, the flexural modulus is increased by 47% approximately over that in the current test method; the tensile and compression moduli of cement stabilized macadam are significantly different. Therefore, if only the compression modulus is used as the structural design parameter of asphalt pavement, there will be a great deviation in the analysis of the load response. In order to achieve scientific design and calculation, the appropriate design parameters should be chosen based on the actual stress state at each point inside the pavement structure

    Unified strength model of asphalt mixture under various loading modes

    Get PDF
    Although the rutting resistance, fatigue cracking, and the resistance to water and frost are important for the asphalt pavement, the strength of asphalt mixture is also an important factor for the asphalt mixture design. The strength of asphalt mixture is directly associated with the overall performance of asphalt mixture. As a top layer material of asphalt pavement, the strength of asphalt mixture plays an indispensable role in the top structural bearing layer. In the present design system, the strength of asphalt pavement is usually achieved via the laboratory tests. The stress states are usually different for the different laboratory approaches. Even at the same stress level, the laboratory strengths of asphalt mixture obtained are significantly different, which leads to misunderstanding of the asphalt mixtures used in asphalt pavement structure design. The arbitrariness of strength determinations affects the effectiveness of the asphalt pavement structure design in civil engineering. Therefore, in order to overcome the design deviation caused by the randomness of the laboratory strength of asphalt mixtures, in this study, the direct tension, indirect tension, and unconfined compression tests were implemented on the specimens under different loading rates. The strength model of asphalt mixture under different loading modes was established. The relationship between the strength ratio and loading rate of direct tension, indirect tension, and unconfined compression tests was adopted separately. Then, one unified strength model of asphalt mixture with different loading modes was established. The preliminary results show that the proposed unified strength model could be applied to improve the accurate degree of laboratory strength. The effectiveness of laboratory-based asphalt pavement structure design can therefore be promoted

    Fatigue equation of cement-treated aggregate base materials under a true stress ratio

    Get PDF
    The objective of this article is to establish a fatigue equation based on the true stress ratio for cement-treated aggregate base materials. The true stress ratio herein means the ratio of the stress and the true strength of the cement-treated aggregate base materials related to loading rates and curing times. The unconfined compressive strength tests and compressive resilience modulus tests were carried out under various loading rates and curing times of 3, 7, 14, 28, 60, 90 days, respectively. According to the test results, the relationship between the unconfined compressive strength (a mix design parameter in China) and the compressive resilience modulus (a structural design parameter and the construction quality control parameter in China) of the cement-treated aggregate base material with different curing times was established. However, it was found that the strengths varied with the loading rates, which is not reflected in the existing fatigue equations. Therefore, it is questionable to obtain the stress ratio of fatigue tests with a fixed strength value obtained from the standard strength test where the loading rate is fixed (in China, the fixed loading rate is 1 mm/min for cement-treated aggregate base materials). Thus, in this paper, the four-point bending strength (i.e., flexural strength) test was carried out at different loading rates to resolve such deficiencies. Based on the strength test results at different loading rates, the true stress ratio of the fatigue test corresponding to the fatigue loading rate can be calculated. Then the four-point bending fatigue test was conducted to establish an improved fatigue equation characterized by the true stress ratio. The results show that the patterns of variation for unconfined compressive strength increasing with the curing time were similar to that of the compressive resilience modulus. The fatigue equation curve based on the true stress ratio can be extended to the strength failure point of (1, 1), where both the true stress ratio and the fatigue life value are one. The internal relationship between the strength failure and the fatigue failure was unified. This article provides a theoretical method and basis for unifying the mix design parameters and the construction quality control parameters

    XTQA: Span-Level Explanations of the Textbook Question Answering

    Full text link
    Textbook Question Answering (TQA) is a task that one should answer a diagram/non-diagram question given a large multi-modal context consisting of abundant essays and diagrams. We argue that the explainability of this task should place students as a key aspect to be considered. To address this issue, we devise a novel architecture towards span-level eXplanations of the TQA (XTQA) based on our proposed coarse-to-fine grained algorithm, which can provide not only the answers but also the span-level evidences to choose them for students. This algorithm first coarsely chooses top MM paragraphs relevant to questions using the TF-IDF method, and then chooses top KK evidence spans finely from all candidate spans within these paragraphs by computing the information gain of each span to questions. Experimental results shows that XTQA significantly improves the state-of-the-art performance compared with baselines. The source code is available at https://github.com/keep-smile-001/opentqaComment: 10 page

    Displacement behavior of methane in organic nanochannels in aqueous environment

    Get PDF
    Shale is rich in organic nanopores where shale gas mainly resides. Shale gas development is often accompanied by water, so studying interactions of gas and water in organic nanopores has become an important topic. Here, we performed molecular dynamics simulations to study the interaction of gas and water in organic nanochannels. It was found that water molecules in the nanochannel could be displaced by methane molecules. And the entered methane molecules would exhibit different layered structures. The above phenomenon is attributed to the fact that methane molecules have lower potential of mean force than water molecules in nanochannels. The revealed mechanism of displacing water molecules with methane molecules in organic nanochannels provides an insight into the interaction of water molecules and methane molecules in organic nanochannels and has tremendous potentials in the development of shale gas.Cited as: Huai, J., Xie, Z., Li, Z., Lou, G., Zhang, J., Kou, J., Zhao, H. Displacement behavior of methane in organic nanochannels in aqueous environment. Capillarity, 2020, 3(4): 56-61, doi: 10.46690/capi.2020.04.0
    corecore